
8700 Horsens • Tlf. 05 • 61 11 00

MICROCOMPUTER FAMILY
KIM ASSEMBLER MANUAL

Preliminary

JANUARY 1977

The inform ation in this manual has been reviewed and is believed to be entirely reliable.
However, no responsibility is assumed for inaccuracies. The material in this manual is
for inform ational purposes only and is subject to change w ithout notice.

W M O STECH N O LO G Y SALES 1977
“ All Rights R eserved”

MOS TECHNOLOGY • Frankfurter Str. 171-175 - D-6378 Neu-lsenburg
Telefon (06102) 8003 Telex 04 185663

TABLE OF CONTENTS

I. INTRODUCTION ----------------------------- - 1

II. INSTRUCTION FORMAT - - - - - - - - - - - - 3

III. ASSEMBLER DIRECTIVES-------------- 14

ERROR MESSAGES - - - - - - - - - - - - - - 17

ASSEMBLER/EDITOR OPERATION - - - - - - - - 27

LIST OF TABLES

Table 1 KIM INSTRUCTION SET - OP CODES 4

Table 2 INSTRUCTION ADDRESSING MODES 13

ii

I. INTRODUCTION

The process of translating a mnemonic or symbolic form of a computer

program to actual machine code is called an assembly, and a program which

performs the translation is an assembler. The symbols used and rules of

association for those symbols are the assembly language. In general one

assembly language statement will translate into one machine instruction.

This distinguishes an assembler from a compiler which may produce many

machine instructions from a single statement.

Normally digital computers use the binary number system for representation

of data and instructions. Computers understand only ones and zeroes corres­

ponding to an "on" or "off" state. Human users on the other hand find it

difficult to work with the binary number system and hence use a more convenient

representation such as octal (base 8), decimal (base 10), or hexadecimal (base 16).

Two representations of the MCS-650X operation to "load" information into an

"accumulator" are shown below:

10101001 (binary)

A9 (hexadecimal)

An instruction to move the value 21 (decimal) to the accumulator is:

A9 15 (hexadecimal)

Users still find numeric representations of instructions tedious to

work with and hence have developed symbolic representations. For example the

preceeding instruction might be written as:

LDA #21

In this case LDA is a symbol for A9, Load the Accumulator. A computer program

used to translate the symbolic form LDA to numeric form A9 is called an

assembler. The symbolic program is referred to as source code and the numeric

program is the object code. Only object code can be executed on the processor.

Each machine instruction to be executed has a symbolic name referred to as

an opcode (operation code). The opcode for "store the accumulator" is STA.

The opcode for "transfer accumulator to index X" is TAX. There are 55 opcodes

for the MCS-650X processors (listed in section II). A machine instruction in

assembly language consists of an opcode and perhaps operands which specify the

data on which the operation is to be performed.

Instructions may be labelled for reference by other instructions as shown in

L2 LDA #12

The label is L2, the opcode is LDA, and the operand is #12. At least one blank

must separate the three parts (fields) of the instruction. Additional blanks

may be inserted for ease of reading. Instructions for KIM assembler have at

most one operand and many have none. In these cases the operation to be

performed is completely specified by the opcode as in CLC (Clear the Carry Bit).

Programming in assembly language requires learning the instruction set

(opcodes), addressing conventions for referencing data, the data structures

within the processor, as well as the structure of assembly language programs.

2

II. INSTRUCTION FORMAT

Assembler instructions for KIM Assembler are of two basic types according

to function:

1. Machine Instructions

2. Assembler Directives

Machine instructions correspond to the 55 operations implemented on the

MCS-650X processors. The instruction format is:

(label) opcode (operands) (comments)

Fields are bracketed to show that they are optional. Labels and comments

are always optional and many operation codes (opcodes) such as RTS (Return

from Subroutine) do not require operands. A typical instruction showing all

four fields is:

LOOP LDA BETA,X FETCH BETA INDEXED BY X

A field is defined as a string of characters separated by a blank space or

tab character or characters. The list of opcodes for the KIM Assembler is

shown in Table 1.

A label is an alphanumeric string of from one to six characters, the

first of which must be alphabetic. A label may not be any of the 55 opcodes

and also may not be any of the special single characters A, S, P, X, or Y.

These special characters are used by the assembler to reference the Accumulator (A),

Stack pointer (S), Processor status (P), and index registers X and Y respectively.

A label may begin in any column provided it is the first field of an instruction.

Labels are used on instructions as branch targets and on data elements for

reference in operands.

3

Table 1

KIM INSTRUCTION SET - OP CODES

ADC Add with Carry to Accumulator
AND "AND" to Accumulator
ASL Shift Left One Bit (Memory or

Accumulator)
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Zero Result
BIT Test Bits in Memory with

Accumulator
BMI Branch on Results Minus
BNE Branch on Result not Zero
BPL Branch on Result Plus
BRK Force an Interrupt or Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set
CLC Clear Carry Flag
CLD Clear Decimal Mode
CLI Clear Interrupt Disable Bit
CLV Clear Overflow Flag
CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y
DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One
E0R Exclusive-or Memory with

Accumulator
INC Increment Memory by One
INX Increment X by One
INY Increment Y by One
JMP Jump to New Location
JSR Juqip to New Location Saving

Return Address

LDA Transfer Memory to Accumulator
LDX Transfer Memory to Index X
LDY Transfer Memory to Index Y
LSR Shift One Bit Right (Memory or

Accumulator)
N0P Do Nothing - No Operation
0RA "OR" Memory with Accumulator
PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack
R0L Rotate One Bit Left (Memory or

Accumulator)
R0R Rotate One Bit Right (Memory or

Accumulat or)
RTI Return From Interrupt
RTS Return From Subroutine
SBC Subtract Memory and Carry from

Accumulator
SEC Set Carry Flag
SED Set Decimal Mode
SEI Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory
TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Register to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Register
TYA Transfer Index Y to Accumulator

4

The operands portion of an instruction specifies either an address or

a value. An address may be computed by expression evaluation and the assem­

bler allows considerable flexibility in expression formation. An assembly

language expression consists of a string of names and constants separated by

operators + , -, *, and / (add, subtract, multiply, and divide). Expressions

are evaluated by the assembler to compute operand addresses. Expressions are

evaluated left to right with no operator precedence and no parenthetical

grouping. Note that expressions are evaluated at assembly time and not

execution time.

Any string of characters following the operands field is considered

to be comments and is listed but not further processed. If the first non­

blank character of any record is a semi-colon (;) the record is processed

as a comment. On instructions which require no operand, comments may follow

the opcode. At least one separating space must separate the fields of an

instruction.

There are five assembler directives used to reserve storage and

direct information to the assembler. Four have symbolic names with a period

as the first character. The fifth, a symbolic equate, uses an equals sign (=)

to establish a value for a symbol. A list of the directives is given below

and their use is explained in a later section.

.BYTE .WORD .OPT .END

Labels and symbols other than directives may not begin with a period.

A typical KIM assembler program segment is shown on the following page.

This example is given primarily to show the form of the information output by

the assembler. An annotated example is given in later sections.

5

213 076A 20
214 076D A9
215 076F 85
216 0771 85
217
218 0773 A5
219 0775 29
220 0777 85
221 0779 A5
222 077B 29
223 077D 4A
224 077E 85
225 0781 AA
227 0782 29
228 0784 85
229 0786 8A
230 0787 4A
231 0788 4A
232 0789 4A
233 078A 85
234 078C 20
235
236 078F AF
237 0791 85
238 0793 AF
239 0795 85

g0_

60 09 ALPHA JSR GETINS FIND START OF NEXT INSTR
00 LDA #0
ID STA EFLAG
IE STA DFLAG NO DATA OR EFFECTIVE ADDR

; PICK UP THE OPCODE AND BREAK IT INTO ITS PARTS
14 LDA OPCODE
03 AND m i
13 STA GROUP BITS 1,0 = GROUP CODE
14 LDA OPCODE
FC AND n i i i n i o o

LSR A
10 STA B72

TAX
07 AND m i l
12 STA v B42

TXA
LSR A
LSR A
LSR A

11 STA B75
79 09 JSR SETUP GET DATA FROM IT

; SEE IF WE HAVE A LABEL TO PRINT
15 LDA I ADR
27 STA NUMBER
16 LDA IADR+1
28 STA NUMBER+1
J.C_Q8rtJB£JAJ JiUM/ PRINT CURRENT P.C.,

\
label 1 operand comments

object code
addressmemory

number
line number

opcode

Example 1. Segment of a KIM program.

6

Symbolic

Perhaps the most common operand addressing mode is the symbolic form as in:

LDA BETA PUT BETA VALUE IN ACCUMULATOR

In the example BETA references a byte in memory that is to be loaded into the

accumulator. BETA is an address at which the value is located. Similarly in

the instruction

LDA ALPHA*BETA

the address ALPHA+BETA is computed by the assembler and the value at the

computed address is loaded into the accumulator. Both ALPHA and BETA must

have previously been defined.

Memory associated with the KIM processor is segmented into pages of

256 bytes each. The first page, page zero, is treated differently by the

assembler and by the processor for optimization of memory storage space. Many

of the instructions have alternate operation codes if the operand address is in

page zero memory. In those cases the address requires only one byte rather

than the normal two. For example if BETA is located at byte 4B in page zero

memory then the code generated for

LDA BETA

is A5 4B. This is called page zero addressing. If BETA is at 01 3C in memory

page one, the code generated is AD 3C 10. This is an example of absolute

addressing. Thus, to optimize storage and execution time a programmer should

design with data areas in page zero memory whenever possible. Note that the

assembler makes decisions on which form to use based on operand address

computation.

7

Constants

Constant values in assembly language can take several forms as needed by

the programmer. If a constant is other than decimal a prefix character is used

to specify type.

$ (Dollar sign) specifies hexadecimal
@ (Commercial at) specifies octal
% (Percent) specifies binary
' (Apostrophe) specifies an ASdl literal character in

immediate instructions

The absence of a prefix symbol indicates decimal value. In the statement

LDA BETA+5

the decimal number 5 is added to BETA to compute the address. Similarly

LDA BETA* $5F

denotes that the hexadecimal value 5F is to be added to BETA for the address

computation.

The immediate mode of addressing is signified by a # (Pounds sign) followed

by a constant. For example,

LDA #2

specifies that the decimal value 2 is to be put into the accumulator.

Similarly,

LDA #'G

will load the ASCII character G into the accumulator.

Immediate mode addressing always generates two bytes of machine code, the

opcode and the value to be used as operand. Note that constant values can be

used in address expressions and as values in immediate mode addressing. They

can also be used to initialize locations as explained in a later section on

assembler directives.

8

Declaring an Address in Immediate Mode

It is often useful to be able to reference the address of a label as

immediate mode data. The assembler recognizes the characters > and < for this

purpose. For instance:

LDA #<HERE

will load the accumulator with the low order eight bits of the address of the

byte labeled HERE and:

LDA #>HERE

will load the accumulator with the high order byte of the address of HERE. This

replaces the usual method of declaring the address as a label, saving four bytes

Bytes Bytes

2 THERE .WORD HERE

3 LDA THERE 2 LDA #>HERE

3 LDA THERE-*-! 2 LDA #>HERE

Relative

There are 8 conditional branch instructions available to the user. An

example is

BEQ START IF EQUAL BRANCH TO START

which might typically follow a compare instruction. If the values compared

are equal, a transfer to the instruction labelled START is made. The branch

address is a one byte positive or negative offset which is added to the program

counter during execution. At the time the addition is made the program counter

is pointing to the next instruction beyond the branch instruction. Thus, a

branch address must be within 129 bytes forward or 125 bytes backward from the

conditional branch instruction. An error will be flagged at assembly time if

a branch target falls outside the bounds for relative addressing. Relative

addressing is not used for any other instruction.

Implied

Twenty-five instructions such as TAX (Transfer Accumulator to Index X)

require no operand and hence are single byte instructions. Thus, the operand

addresses are implied by the operation code.

Four instructions ASL, LSR, ROR, and ROL are special in that the accumulator,

A, can be used as an operand. In this special case these four instructions

are treated as implied mode addressing and only an operation code is generated.

Indexed

Operands may be indexed with values in registers X and Y. Indexing is

indicated by a comma and appropriate letter following the operand. For example

LDA BETA,Y

The Value in register Y is added to BETA to form the address of the operand.

Not all instructions can be indexed and on some indexing may be permitted with

one register but not the other. Refer to Table 2 for allowable addressing modes.

10

Indexed Indirect

In this mode the operand address is a location in page zero memory which

contains the address to be used as an operand. An example is:

LPA (BETA,X)

The parentheses around the operand indicate it is indirect mode. In the above

example the value in index register X is added to BETA. That sum must reference

a location in page zero memory. During execution the high order byte of the

address is ignored, thus forcing a page zero address. The two bytes starting

at that location in page zero memory arc taken as the address of the operand.

For purposes of illustration, assume the following:

BETA is 12
X contains 4
Locations 0017 and 0016 are 01 and 25
Location 0125 contains 37

Then BETA + X is 16, the address at location 16 is 0125. The value at 0125 is

37 and hence the instruction LDA (BETA,X) loads the value 37 into the accumu­

lator. This form of addressing is shown in the illustration below.

LDA (operand,X)

11

Indirect Indexed

Another mode of indirect addressing uses index register Y and is illus­

trated by:

LDA (GAMMA) ,Y

In this case GAMMA references a page zero location at which an address is to

be found. The value in index Y is added to that address to compute the actual

address of the operand. Suppose for example that:

GAMMA is 38 (hexadecimal)
Y contains 7
Locations 0039 and 0038 are 00 and 54
Location 005B contains 126

Then the address at 38 is 0054 and 7 is added to this, giving an effective

address 005B. The value at 005B is 126 which is loaded into the accumulator.

In indexed indirect the index X is added to the operand prior to the in­

direction. In indirect indexed the indirection is done and then the index Y is

added to compute the effective address. Indirect mode is always indexed except

for a JMP instruction which allows an absolute indirect address as exemplified

by JMP (DELTA) which causes a branch to the address at location DELTA. The

indexed indirect mode of addressing is shown in the illustration below.

LDA (operand) ,Y

operand — |

1 = 1
L=n = ♦ Y

value [

12

X

4>4->d

X4)*T3C

T3C

ACD X X X X X X X
AND X X X X X X X
ASL (1) X X X X
BIT X X
CMP X X X X X X X
CPY X X X
CPX (2) X X X
DEC X X X X
EOR X X X X X X X
INC X X X X
JMP (3) X X
JSR X
LDA X X X X X X X
LDX (2) X X X X X
LDY X X X X X
LSR (1) X X X X
ORA X X X X X X X
ROL (1) X X X X
ROR (1) X X X X
SBC X X X X X X X
STA X X X X X X
STX X X X
STY X X X

(1) Accumulator A can also be an operand
(2) Indexing with Y
(3) Indirect is absolute indirect and not indexed

The 8 conditional branches use relative addressing.
The 25 other instructions not in this table use implied addressing.

Table 2. Instruction addressing modes

13

III. ASSEMBLER DIRECTIVES

There are five directives which are used to control the assembly process,

define values or initialize memory locations. Assembler directives always

appear in the opcode field of an instruction and thus might be considered as

assembly time opcodes instead of execution time opcodes. The directives are:

.BYTE, .WORD, .OPT, .END and equates which are denoted by the equals sign =.

All directives which are preceded by the period may be abbreviated to the period

and three characters if desired (eg. .BYT).

.BYTE is used to reserve one byte of memory and load it with a value. The

directive may contain multiple operands which will store values in consecutive

bytes. ASCII strings may also be generated by enclosing the string with quotes.

HERE .BYTE 2

THERE .BYTE 1, $F, @3

ASCII .BYTE 'ABCDEFH'

Note that numbers may be represented in the most convenient form. In general,

any valid MCS650X expression which can be resolved to eight bits may be used 'in

this directive. If it is desired to include a quote in an ASCII string, this

may be done by putting two quotes in the string;

.BYTE 'JIM"S CYCLE'

could be used to print:

JIM'S CYCLE

.WORD is used to reserve and load two bytes of data at a time. Any valid

expression, except for ASCII strings, may be used in the operand field.

HERE .WORD 2

THERE .WORD 1, $FF03, @3

WHERE .WORD HERE, THERE

The most common use for .WORD is to generate addresses as shown in the above

example labelled "WHERE" which stores the 16 bit addresses of "HERE" and "THERE"

Addresses in the MCS650X are fetched from memory in the order low byte, high byte,

14

and therefore .WORD generates the values in this order. The hexadecimal

portion of the second example above

= is the EQUATE directive and i

the program counter (*), or assign ;

HERE *=*+1

WHERE *=*+2

*=$200

NB=8

MB=NB+%101

NOTE: Expressions must not contain

flagged as an error.

For example:

($FF03) would be stored 03,FF.

s used to reserve memory locations, reset

i value to a symbol.

reserve one byte

reserves two bytes

set program counter

assign value

assign value

forward references or they will be

Q = C + D - E * F

would be legal if C, D, E and F are all defined but would be illegal if any of

the variables were a forward reference. Note also that expressions are

evaluated in strict left to right order.

.OPT is the most powerful directive and is used to control generation of

output fields, listings and expansion of ASCII strings in .BYTE directives

.OPT ERRORS, LIST, SYMBOLS, GENERATE, TAB

.OPT NOERRORS, NOSYMBOLS, NOLIST, NOGENERATE, NOTAB

The operand fields in this directive are only scanned for the first three

characters.

Default settings are:

.OPT SYM, LIST, ERR, TAB

The individual .OPT operands are:

(1) SYM is used to control the printing of the symbol table at the end

of the listing. The symbol table is not sorted.

15

(2) ERRORS {NOERRORS} is used to control creation of error listing. To

view only errors on the assembly use:

.OPT ERRORS, NOLISTING

until all errors have been corrected and then make one more run with

.OPT NOERRORS, LISTING

(3) LIST {NOLIST} is used to control the generation of the listing which

contains source input, errors and warnings 5 code generated.

(4) GENERATE {NOGENERATE} is used to control printing of ASCII strings in

the .BYTE directive. The first two characters will always be printed

and further characters will be printed (normally two bytes per line)

if GENERATE is used.

(5) TAB {NOTAB} is used to control automatic spacing of labels, op codes,

and comments. Use of this option will save memory space in storing

the source code, since only a single space is needed between labels,

opcodes, and comments, yet the assembler output is neatly formatted.

Users with narrow-carriage terminals (e.g., 32-character/line CRT

terminals) may find the spacing objectionable and wish to turn it off.

.END must be the last statement in a program and is used to signal the

physical end of the program.

16

ERROR MESSAGES

Error #1

NOT USED

Error #2

FATAL - LABEL PREVIOUSLY DEFINED

The first field on the line is not an opcode so it is interpreted as a

label. If the current line is the first line in which that symbol appears

as a label (or on the left side of an equals sign) it is put in the symbol

table and tagged as defined in that line. However, if the symbol has

appeared as a label, or on the left of an equate, prior to the current

line, the assembler finds the label already in the symbol table. The

assembler does not allow redefinitions of symbols and will, in this case,

print the error message.

Error #3

FATAL - ILLEGAL OR MISSING OPCODE

The assembler searches a line until it finds the first non-blank character

string. If this string is not one of the 55 valid opcodes it assumes it is

a label and places it in the symbol table. It then continues parsing for

the next non-blank character string. If none is found, the next line will

be read in and the assembly will continue. However, if a 2nd field is

found it is assumed to be an opcode (since one label is allowed per line).

If this character string is not a valid opcode, the error message is printed.

17

This error can occur if opcodes are misspelled in which case the assembler

will interpret the opcode as a label (if no label appears on the line).

It will then try to assemble the next field as the opcode. If there

is another field, this error will be printed.

Check for a misspelled opcode or for more than one label on a line.

Error #4

FATAL - ADDRESS NOT VALID

An address referred to in an instruction or in one of the assembler

directives (.BYTE and .WORD) is invalid. In the case of an instruction,

the operand that is generated by the assembler must be greater than or

equal to zero and less than or equal to FFFF16 (2 bytes long). (This

excludes relative branches which are limited to ± 127 from the next

instruction.) If the operand generates more than 2 bytes of code or

is less than zero, this error message will be printed. For a .BYTE each

operand is limited to one byte and for a .WORD each operand is limited to

two bytes. All must be greater than or equal to zero.

This validity is checked after, the operand is evaluated. Check for

values of symbols used in the operand field (see the symbol table for

this information).

Error #5

FATAL - ACCUMULATOR MODE NOT ALLOWED

Following a legal opcode and one or more spaces is the letter A followed

by 1 or more spaces. The assembler is trying to use the accumulator

(A means accumulator mode) as the operand. However, the opcode in the

statement is one which does not allow reference to the accumulator.

Error #3 (Continued)

18

Check for a statement labelled A (an illegal statement) to which this

statement is referencing. If you were trying to reference the accumulator,

look up the valid operands for the opcode used.

Error #6
• i

FATAL - FORWARD REFERENCE IN .BYTE OR .WORD

Error #5 (Continued)

Error #7

FATAL - RAN OFF END OF LINE

This error message will occur if the assembler is looking for a needed

field and runs off the end of the line before the field is found. The

following should be checked for: a valid opcode field without an operand

field on the same line; an opcode that was thought to take an implied

operand, which in fact needed an operand; as ASCII string that is missing

the closing quote (make sure any embedded quotes are doubled - to have a

quote in the string at the end, there must be 3 quotes - 2 for the embedded

quote and one to close off the string); a comma at the end of the operand

field indicates there are more operands to come; if there aren’t other

operands, the assembler will run off the line looking for them.

19

Error #8

FATAL - LABEL DOESN'T BEGIN WITH ALPHABETIC CHAR.

The first non-blank field is not a valid opcode. Therefore, the

assembler tried to interpret it as a label. However, the first character

of the field does not begin with an alphabetic character and the error,

message is printed.

Check for an unlabelled statement with only an operand field that does

start with a special character. Also check for illegal label instruction.

Error #9

FATAL - LABEL GREATER THAN SIX CHARACTERS

All symbols are limited to six characters in length. When parsing, the

assembler looks for one of the separating characters to find the end of a

label or string. If other than one of these separators is used, the errdr

message will be printed providing the illegal separator causes the symbol

to extend beyond six characters in length. Check for no spacing between

labels and opcodes. Also check fpr a comment line with a long first word

that doesn’t begin with a semicolon. In this case the assembler is trying

to interpret part of the comment as a label.

Error #10

FATAL - LABEL OR OPCODE CONTAINS NON-ALPHANUMERIC

Labels are made up of from one to six alphanumeric digits. The label

field must be separated from the opcode field by one or more blanks.

If a special character or other separator is between the label and the

opcode, this error message might be printed.

The 55 valid opcodes are each three alphabetic characters. They

must be separated from the operand field (if one is necessary) by one or

more blanks. If the opcode ends with a special character (such as a

comma), this error message will be printed.

20

In the case of a lone label or an opcode that needs no operand,

they can be followed directly by a semicolon to denote the rest

of the line as a comment.

Error #11

FATAL - FORWARD REFERENCE IN EQUATE OR ORG

The expression on the right side of an equals sign contains a

symbol that hasn't been defined previously. One of the operations

of the assembler is to evaluate expressions or labels and assign

addresses or values to them. The assembler processes the input values

sequentially which means that all of the symbolic values that are

encountered fall into two classes--already defined values and not

previously encountered values. The assembler assigns defined values and

builds a table of undefined values. When a previously used value is

discovered, it is substituted into the table.

A label or expression which uses a yet undefined value is considered

to be referenced forward to the to-be-defined value.

To allow for conformity of evaluating expressions, this assembler allows

for one level of forward reference so that the following code is allowed:

Error #10 (Continued)

Line Number Label Opcode Operand

100 BNE New One

200 New One LDA #5

but the following is not allowed:

Line Number Label Opcode Operand

100 BNE New One

200 New One Next + f

300 Next LDA #5

21

This feature should not disturb the normal use of labels as the cure

for this error.

Error #11 (Continued)

Line Number Label Opcode Operand

100 BNE New One

300 Next LDA #5

301 New One Next + 5

is very simple and always solves the problem.

This error may also mean that the value on the right side of

the = is not defined at all in the program in which case the cure is

the same as for undefined values.

Due to the sequential processing of the assembler and the dependency

on the value of the program counter on symbols, throughout the rest of

the program, the assembler cannot process a forward reference in this type

of statement. All expressions with symbols that appear on the right side

of any equals sign must refer only to previously defined symbols for the

equate to be processed.

Error #12

FATAL - INVALID INDEX - MUST BE X OR Y

After finding a valid opcode, the assembler looks for the operand. In

this case, the first character in the operand field is a left paren. The

assembler interprets the next field as an indirect address which, with the

exception of the jump statement, must be indexed by one of the index

registers, X or Y. In the erroneous case, the character the assembler

was trying to interpret as an index register was not X or Y and the

error was printed.

Check for the operand field starting with a left paren. If it is

supposed to be an indirect operand, recheck the correct format for the

22

two types available. If the format was wrong (missing right paren or index

register), this error will be printed. Also check for missing or wrong

index registers in an indexed operand (form: expression, index register).

Error #13

FATAL - INVALID EXPRESSION IN OPERAND

In evaluating an expression, the assembler found a character it couldn't

interpret as being part of a valid expression. This can happen if the

field following an opcode contains special characters not valid within

expressions (e.g. parentheses). Check the operand field and make sure

only valid special characters are within a field (between commas).

Error #14

FATAL - UNDEFINED ASSEMBLER DIRECTIVE

All assembler directives begin with a period. If a period is the first

character in a non-blank field the assembler interprets the following

character string as a directive. If the character string that follows

is not a valid assembler directive, this error message will be printed.

Check for a misspelled directive, or a period at the beginning of a

field that is not a directive.

Error #15

FATAL - INVALID OPERAND FOR PAGE ZERO MODE

Error #12 (Continued)

23

Error #16

FATAL - INVALID OPERAND FOR ABSOLUTE MODE

Error #17

FATAL - RELATIVE BRANCH OUT OF RANGE

All of the branch instructions (excluding the two jumps) are assembled into

2 bytes of code. One byte is for the opcode and the other for the address

to branch to. To allow a forward or backward branch, this branch is taken

relative to the beginning of the next instruction, according to the address

byte. If the value of the byte is 0-127 the branch is forward; if the

value is 128-255 the branch is backward. (A negative branch is in 2's

complement form). Therefore, a branch instruction can only branch forward

or backward 127 bytes relative to the beginning of the next instruction.

If an attempt is made to branch further than these limits, the error

message will be printed.

24

Error *18

FATAL - ILLEGAL OPERAND TYPE FOR THIS INSTRUCTION

After finding an opcode that does not have an implied operand, the

assembler passes the operand field (the next non-blank field following

the opcode) and determines what type of operand it is (indexed, absolute, etc.).

If the type of operand found is not valid for the opcode, this error message

will be printed.

Check to see what types of operands are allowed for the opcode and make

sure the form of the operand type is correct (see the section on addressing

modes).

Error #19

FATAL - OUT OF BOUNDS ON INDIRECT ADDRESSING

An indirect address is recognized by the assembler by the parentheses that

surround it. If the field following an opcode has parens around it, the

assembler will try to assemble it as an indirect address. Since indirects

work only in page zero memory, if the address in the operand field extends

into absolute (is larger than 256 - one byte) this error message will be

printed.

This error will only occur if the operand field is in correct form (i.e. an

index register following the address), and the address field is out of page

zero. To correct this, the address field must refer to page zerb memory.

Error #20

FATAL - A,X,Y,S, AND P ARE RESERVED LABELS

A label on a statement is one of the five reserved names (A, X, Y, S AND P).

They have special meaning to the assembler and therefore cannot be used

as labels. Use of one of these names will cause the above error message

to be printed and no code to be generated for the statement. The label

does not get defined and will appear in the symbol table as an undefined

25

variable. Reference to such a label elsewhere in the program will cause

error messages to be printed as if the label were never declared.

How to avoid: don't use A, X, Y, S or P as a label to a statement.

Error #21

FATAL - PROGRAM COUNTER NEGATIVE - RESET TO 0

An assembled program is loaded into core from position 0 to 64K (65536).

This is the extent of the machine. Instructions can only refer to up to

2 bytes of information. Because there is not such a thing as negative memory,

an attempt to reference a negative position will cause this error and the

program counter (or pointer to the current memory location) will be reset

to 0.

When this error occurs, the assembler continues assembling the code

with the new value of the program counter. This could cause multiple

bytes to be assembled into the same locations. Therefore, care should be

taken to keep the program counter within the proper limits.

Error #22

FATAL - INVALID CHARACTER - EXCEPTING "=" FOR ORG

Error #20 (Continued)

26

ASSEMBLER/EDITQR OPERATION

Assembler Location

The KIM Resident Assembler ROM packages must first be inserted in

the KIM ROM board and the ROM Board address switches must be set for E000,

the starting address of the assembler. See the ROM board documentation for

details. The Assembler/Editor resides in memory in locations E000 through F7FF.

Reserving Space for the Symbol Table

The assembler will generate object code and store it at the locations

specified in the assembly language program. RAM must exist in your KIM at these

locations. If your source program is also memory-resident, your object program

should not be written to the same RAM area where the source code resides.

In addition to space for source code and object code, you must reserve

space in memory for the assembler to store its symbol table while it is constructing

your object program. Each symbol you define in your source program will take 8 byte

of memory in the symbol table, thus if you expect that a particular source program

will use about 50 symbols, you should reserve at least 400 bytes for the symbol

table. If the assembler runs out of room in the symbol table, the program will

terminate with an error message.

27

You define the RAM area you wish to reserve for the symbol table by entering

the upper and lower addresses of the area in two pairs of locations in page zero.

At location Dly and EÔ you enter the low order and high order portions of the

beginning of your symbol table and at location El_ and E2_ the address of the

upper limit of the symbol table.

An example:

You have a 100-line source program with about 25 symbols which you wish

to assemble. You have 4K of RAM beginning at location 2000 (hex). You can

estimate that your source program will take about 2000 (decimal) bytes (20

characters per average source line) and your symbol table will take about

200 bytes (8 bytes/ symbol). You have defined the origin of your object program

at location 2000 (hex), and estimate that your source program will generate about

200 bytes of object code (roughly 2 bytes per source line). Thus your total

memory allocation should be about:

Source Code 2000 bytes
Object Code 200 bytes
Symbol Table 200 bytes

2400 bytes

Since you have 4096 bytes of RAM there is no problem.

A reasonable way to allocate memory might be:

Memory Use Memory Address (hex)

Source Program 2500-2FFF (3072 location)
2000-21FF (512 location)
2200-24FF (512 location)

Object Program
Symbol Table

So your memory could hold about 150 lines of source code, 500 bytes of

object code, and 60 symbols. To define this memory you must specify the origin of

your object program at 2000 (hex) by using the statement: *=$2000 in your source

program. To specify the origin of your source program, answer "2500" to the

BASE = query when entering the source program via the editor.
28

To specify the location of your symbol table enter the following values:

Memory Location Value

0062 ool beginning of symbol table
0063 22J
0064 ff!

end of symbol table
0065 24|

These locations should be specified before you enter the editor to

type in your source program so that you can go directly from the editor

to the assembler (using the A command) with symbol table space already defined.

The terminal session for such a run might look like (what you type is

underlined) :

(hit RS on KIM and rubout on TTY)

KIM
XXXX XX DF_

00DF XX 00.
00E0 XX 22̂ _
00E1 XX FF. * Define symbol table
00E2 XX 24^
00E3 XX F100 Starting address of Editor
F100 XX G
BASE = 2500 Starting address for source
N OR 0? N New File

10 *=$2000
1

First line of source c$de

1
S70 .END Last line of source code
A Go to Assembler
KIM ASM Assembler listing begins

KIM Back to KIM
XXXX XX 2000 Go to object program
2000 XX G Run your program

Assembling From Paper Tape

If your source program is too.large to fit in your available KIM system

memory, you may assemble directly from paper tape. You create the paper tape

by entering successive portions of your source program into the editor and

dump each portion to paper tape using the T command. When all the paper tape

is ready, set the boundaries for the symbol table and then load a value of 51

in location 00E3 and a value of F4 in 00E4. Go to the starting address of the

assembler (E000) and put the first tape in the reader. Hit the G key on your

TTY and the assembler will read the first line from tape and assemble it and

then read the next line, etc. When the first paper tape ends, insert the next

tape and restart the reader. The assembler will continue to read tapes until

it encounters a .END directive.

Once the assembly is complete, you may run or store your object program

as in a memory-to-memory assembly.

Reserved Memory Locations

The assembler and text editor use all page zero memory locations above

location 0042. Object Code should not be assembled into those locations.

You may use those locations for data storage for your program, but remember

that locations above 0042 will be altered by the assembler and editor during

their operation.

Assembling Large Source Programs from Cassette Tape

If you wish to assemble a source program which will not fit in your avail­

able memory, you may assemble it in pieces. Enter the first portion of your

source program into the text editor and store it on audio cassette (see the

editor manual for details). Then enter the next and succeeding portions in

30

the same memory area, designating each as a new file to the editor. Save each

portion on audio tape. Only the last segment should contain a .END statement.

Now play the first segment back into memory using normal audio tape loading

procedures, enter the editor, giving the base address of the text file and declar­

ing it to be an old file. Assemble the first segment using the A command. The

assembler will return to the KIM monitor when it comes to the end of the file.

Now enter the second segment into the same memory area using the audio

tape dump procedure, Enter the editor, give the base address of the text file

and declare it to be an old file. Do not use the A command. Exit to KIM and

enter the assembler through location E011. This will cause the assembler to

continue assembly where it left off with the previous file without clearing the

previously generated symbol table.

Continue to enter successive segments of text, enter and exit the editor

for each segment and return to the assembler at location H011 for each segment.

When the assembler detects a .END directive it will print the symbol table and

terminate the assembly process.

31

Notizen

Notizen

Notizen

Notizen

nFORmRTion
U l U N D -

mPIlTilt:
H I E S

U B E K

I E l

Herausgeber:
MCDS Microcomputer
Datensysteme GmbH

Al C
ns ICROCOmPUTFR-

bringt Ihnen diese Loseblattsammlung ins Haus. DasSachgebiet wird mitOriginaldaten und den
jeweils neusten Informationen behandelt. Die Texte sind in deutsch und englisch abgefa&t. Der
Ausgabenumfang bewegt sich zwischen 1 und 250 Seiten. Urn immer up to date zu sein, konnen

Sie als Abonnent kontinuieriich unsere Erganzungen beziehen.
Der Seitenpreis betragt 0,10 DM.

MCDS Microcomputer Datensysteme GmbH • Luisenplatz 4 • D-6100 Darmstadt

I
'

l
i

l
K

t
i

Eine Inform
ation, auf die Sie nicht verzichten konnen. Allein das Suchen nach einem

 Begriff, einer Aussagi
Oder einem

 Program
m

 wird Sie das Vielfache des Abonnentenpreises kosten. Sie sind im
m

er iiber den neuestei
Stand der M

icrocom
puter-Technik unterrichtet. Diese Loseblattsam

m
lung deckt das gesam

te Spektrum
 de:

Sachgebietes „M
OS-M

icrocom
puter" ab. Vom

 Datenblatt, iiber die Hardware zur wichtigen Software, iiber Bii
cher.Bausatze, Fachberichte,vollstandigeSystem

e finden Siealles in unserer M
ODS M

icrocom
puter-Inform

ation
--

Anforderung
Ich/W

ir mochten per Nachnahme zugeschickt bekommen:
Stck.
Stck.
Stck.
Stck.

“StclT
star.
~5tar
Stck.
Stck.
Stck.

121 M
OS-KIM

 1 M
icrocomputer-Handbuch

101 M
OS-KIM

 1 M
icrocomputer-Handbuch

131 MOS-Programmier-Fibel
111 MOS-Programmier-Fibel
132 MOS-Hardware-Handbuch
112 MOS-Hardware-Handbuch
201 M

OS-Produktspektrum Ubersicht
901 M

CDS-Produktspektrum Obersicht
911 M

CDS-Datensichtgerate Information
Loseblattsammelordner (Kunststoff)

deutsch
englisch
deutsch
englisch
deutsch
englisch

DM 19,80
DM 19,80
DM 28,60
DM 28,60
DM 24,90
DM 24,90
kostenlos
kostenlos
kostenlos
DM

4,95
Mochte M

icrocomputer-Information im Abonnent beziehen.
Bitte Absender hier sorgfaltig eintragen-.

M
CDS M

icrocom
puter Datensystem

e Gm
bH

Luisenplatz 4

D-6100 Darm
stadt

I

Nom
e, F irm

a

Nam
e. Firm

a, Abteilung

Strade, Hausnum
m

er, Postfach

Postleifzohl
Ort

MOS TECHNOLOGY INC.

it!

V ■

II S , L h

HlitTIICOHI|llltcr
ilateiisYstcmc gmbh*
luisscii|ilat% 4*
il 41 ilarmstailt'
^ 0ai51/2B59

This was brought to you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

