Game Development Archeology: Zelda on Game Boy comes with source

Imagine you’re writing a Game Boy game, and the resulting ROM with all the code and data is just a little over one megabyte in size. No big deal, just pad the game to two megabytes, and use a 2 MB ROM in the cartridge. Just tell the linker to allocate 2 MB or RAM, put the actual data at the beginning, and then write a 2 MB “.gb” image to disk, which will then be sent to the ROM chip factory. read more

How retiring segmentation in AMD64 long mode broke VMware

UNIX, Windows NT, and all the operating systems in their class rely on virtual memory, or paging, in order to provide every process on the system a complete address space of its own. An easier way to protect processes from each other is segmentation: The 4 GB address space of a 32 bit CPU is divided into segments (consisting of a physical base address and a limit), one for each process, and every process may only access their own segment. This is what the 286 did. read more

Strange SSE3 opcodes

Intel used some strange opcodes for the SSE3 instructions. All MMX/SSE opcodes use the 0x0f prefix (former “pop cs”). They soon noticed the the 0x0f area gets full, so they used the 0x66, 0xf2, 0xf3 prefix as modifiers. The basic rule is: read more

Shift oddities

Most of the x86 instructions will automatically alter the flags depending on the result. Sometimes this is rather frustrating because you actually what to preserve the flags as long as possible, and sometimes you miss a “mov eax, ecx” which alters the flags. But at least it’s guaranteed that an instruction either sets the flags or it doesn’t touch them, independent of the actual operation… Or is it? read more

Virtualization: The elegant way and the x86 way

Virtualization means running one or more complete operating systems (at the same time) on one machine, possibly on top of another operating system. VMware, VirtualPC, Parallels etc. support, for example, running a complete GNU/Linux OS on top of Windows. For virtualization, the Virtual Machine Monitor (VMM) must be more powerful than kernel mode code of the guest: The guest’s kernel mode code must not be allowed to change the global state of the machine, but may not notice that its attempts fail, as it was designed for kernel mode. The VMM as the arbiter must be able to control the guest completely. read more

Asking the kernel how to make a syscall

Imagine you’re an i386 user mode application on a modern operating system, and you want to make a syscall, for example to request some memory or create a new thread. But syscalls can be made in various ways on the i386 family of CPUs (int, call gates, sysenter, syscall), and CPUs tend to support only a subset of them. But hardcoding “int” into the kernel is a waste of resources on modern CPUs, because sysenter is a lot faster. read more