
AUCItOCOiUPI(TERS

CROSS ASSEMBLER MANUAL
PRELIMINARY

Publication Number 6500-60P

MCS6500

MICROCOMPUTER FAMILY

CROSS ASSEMBLER MANUAL

PRELEME>JARY

AUGUST 1975

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for informational
purposes only and is subject to change without notice.

First Edition
©MOS TECHNOLOGY, INC. 1975

“All Rights Reserved”

MOS TECHNOLOGY, INC.
950 Rittenhouse Road
Norristown, PA. 19401

TABLE OF CONTENTS

I. INTRODUCTION...................................... 1

II. INSTRUCTION FORMAT............................... 3

III. ASSEMBLER DIRECTIVES............................. 13

IV. OUTPUT FILES...................................... 17

A. LISTING FILE.............................. 17

B. ERROR FILE................................ 19

C. INTERFACE FILE............................ 29

D . SAMPLE LISTING EXPLANATIONS.............. 30

E. SAMPLE LISTING PRINTOUT................... 33

V. USING THE G. E . TIMESHARING CROSS-ASSEMBLER...... 37

VI. PROCEDURE FOR USING THE MCS650X CROSS-ASSEMBLER
ON THE NCSS SYSTEM. 39

i

I . INTRODUCTION

This manual descr ibes the assembly language and assembly process fo r

programs fo r the MCS-650X s e r ie s o f m icroprocessors. Several assemblers are

available f o r program development and while they are all s l i g h t ly d if fe ren t

in deta il o f use they are e s s en t ia l ly the same in substance.

The process o f transla t ing a mnemonic or symbolic form o f a computer

program to actual machine code i s ca l led an assembly, and a programwhich

performs the transla tion is an assembler. The symbols used and rules o f

assoc ia tion fo r those symbols are the assembly language. In general one

assembly language statement w il l transla te into one machine in struct ion.

This d ist ingu ishes an assembler from a compiler which may produce many

machine in stru ct ion s from a s in g le statement. An assemblerwhich executes

on a computer other than the one fo r which code is generated i s ca l led a

cross-assembler. Use o f cross-assemblers fo r program development fo r micro

processors i s common s in ce often a microcomputer system has fewer resources

than are needed f o r an assembler.

Normally d ig i ta l computers use the binary number system fo r representation

o f data and in struct ion s. Computers understand only ones and zeroes corre s

ponding to an "on" o r " o f f " s ta te. Human users on the other hand find i t

d i f f i c u l t to work with the binary number system and hence use a more convenient

representation such as octal (base 8), decimal (base 10), or hexadecimal (base 16).

Two representations o f the MCS-650X operation to "load" information into an

"accumulator" are shown below:

10101001 (binary)
A9 (hexadecimal)

1

An instruction to move the value 21 (decimal) to the accumulator is:

A9 15 (hexadecimal)
Users s t i l l find numeric representations o f instructions tedious to

work with and hence have developed symbolic representations. For example the

preceeding instruction might be written as:
LDA #21

In this case LDA is a symbol for A9, Load the Accumulator. A computer program
used to translate the symbolic form LDA to numeric form A9 is called an assembler.
The symbolic program is referred to as source code and the numeric program is the

object code. Only object code can be executed on the processor.
Each machine instruction to be executed has a symbolic name referred to as

an opcode (operation code). The opcode for "store the accumulator" is STA.

The opcode for "transfer accumulator to index X" is TAX. There are 55 opcodes
for the MCS-650X processors (listed in section II). A machine instruction in
assembly language consists o f an opcode and perhaps operands which specify the
data on which the operation is to be performed.

Instructions may be labelled for reference by other instructions as shown in
L2 LDA #12

The label is L2, the opcode is LDA, and the operand is #12. At least one blank
must separate the three parts (fields) o f the instruction. Additional blanks
may be inserted for ease o f reading. Instructions for the MCS-650X processors
have at most one operand and many have none. In these cases the operation to be
performed is completely spec if ied by the opcode as in CLC (Clear the Carry Bit).

Programming in assembly language requires learning the instruction set
(opcodes), addressing conventions for referencing data, the data structures
within the processor, as well as the structure o f assembly language programs.

2

II. INSTRUCTION FORMAT
Assembler instructions for the MCS-650X are of two basic types

according to function:
1. Machine instructions
2. Assembler directives

Machine instructions correspond to the 55 operations implemented on
the MCS-650X processors. The instruction format is:

(label) opcode (operands) (comments)
Fields are bracketed to show that they are optional. Labels and
comments are always optional and many operation codes (opcodes) such
as RTS (Return from Subroutine) do not require operands. A typical
instruction showing all four fields is:

LOOP LDA BETA,X FETCH BETA INDEXED BY X
A field is defined as a string of characters separated by a blank
space or tab character or characters. The list of opcodes for the
MCS-650X processors is shown in Table 1.

A label is an alphanumeric string of from one to six characters,
the first of which must be alphabetic. A label may not be any of
the 55 opcodes and also may not be any of the special single characters
A, S, P, X, or Y. These special characters are used by the assembler
to reference the Accumulator (A), Stack pointer (S), Processor
status (P), and index registers X and Y respectively. A label may
begin in any column provided it is the first field of an instruction.
Labels are used on instructions as branch targets and on data elements
for reference in operands.

3

Table 1.
MCS650X MICROPROCESSOR INSTRUCTION SET - OP CODES

ADC Add with Carry to Accumulator
AND "AND" to Accumulator
ASL Shift Left One Bit (Memory or

Accumulator)
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Zero Result
BIT Test Bits in Memory with

Accumulator
BMI Branch on Result Minus
BNE Branch on Result not Zero
BPL Branch on Result Plus
BRK Force an Interrupt or Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set
CLC Clear Carry Flag
CLD Clear Decimal Mode
CLI Clear Interrupt Disable Bit
CLV Clear Overflow Flag
CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y
DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One
E0R Exclusive-or Memory with

Accumulator
INC Increment Memory by One
INX Increment X by One
INY Increment Y by One
JMP Jump to New Location

JSR Jump to New Location Saving Retum
Address

LDA Transfer Memory to Accumulator
LDX Transfer Memory to Index X
LDY Transfer Memory to Index Y
LSR Shift One Bit Right (Memory or

Accumulator)

N0P Do Nothing - No Operation
0RA "OR" Memory with Accumulator
PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack
R0L Rotate One Bit Left (Memory or

Accumulator)

RTI Return From Interrupt
RTS Return From Subroutine
SBC Subtract Memory and Carry from

Accumulator
SEC Set Carry Flag
SED Set Decimal Mode
SEI Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory
TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Register to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Register
TYA Transfer Index Y to Accumulator

4

The operands portion of an instruction specifies either an address or
a value. An address may be computed by expression evaluation and the assem
bler allows considerable flex ib il ity in expression formation. An assembly
language expression consists of a string of names and constants separated by
operators + , -, *, and / (add, subtract, multiply, and divide). Expressions
are evaluated by the assembler to compute operand addresses. Expressions are
evaluated le ft to right with no operator precedence and no parenthetical
grouping. Note that expressions are evaluated at assembly time and not
execution time.

Any string of characters following the operands fie ld is considered
to be comments and is listed but not further processed. I f the f ir s t non
blank character of any record is a semi-colon (;) the record is processed
as a comment. On instructions which require no operand, comments may follow
the opcode. At least one separating character (space or horizontal tab)
must separate the fields of an instruction.

There are eight assembler directives used to reserve storage and
direct information to the assembler. Seven have symbolic names with a period
as the f ir s t character. The eighth, a symbolic equate, uses an equals
sign (=) to establish a value for a symbol. A l i s t of the directives is
given below and their use is explained in a later section.

.BYTE .WORD .DBYTE .PAGE .SKIP .OPT .END
Labels and symbols other than directives may not begin with a period.

A typical MCS-650X assembler program segment is shown on the following
page. This example is given primarily to show the form of the information
output by the assembler. An annotated example is given in later sections.

5

213 076A 20 60 09 ALPHA JSR GETINS FIND START OF NEXT INSTR
214 076D A9 00 LDA #0
215 076F 85 ID STA EFLAG
216 0771 85 lE STA DFLAG NO DATA OR EFFECTIVE ADDR YET
217 5 PICK UP THE OPCODE AND BREAK IT INTO ITS PARTS
218 0773 A5 14 LDA OPCODE
219 0775 29 03 AND r% i i
220 0777 85 13 STA GROUP BITS 1,0 = GROUP CODE
221 0779 A5 14 LDA OPCODE
222 077B 29 FC AND «11111100
223 077D 4A LSR A
224 077E 85 10 STA B72
225 0781 AA TAX
227 0782 29 07 AND #%m
228 0784 85 12 STA B42
229 0786 8A TXA
230 0787 4A LSR A
231 0788 4A LSR A
232 0789 4A LSR A
233 078A 85 11 STA B75
234 078C 20 79 09 JSR SETUP GET DATA FROM IT
235 ; SEE IF WE HAVE A LABEL TO PRINT
236 078F AF 15 LDA IADR
237 0791 85 27 STA NUMBER
238 0793 AF 16 LDA IADR+1
239 0795 85 28 STA NUMBER+1
240 0797, 20 _K_08, ^BETA, JSR NUM, vPRINT CURRENT P.C,.

1 ob ject code label | operand comments
memory address opcode

line number

Example 1. Segment o f an MCS-650X program.

6

Symboli c

Perhaps the most common operand addressing mode is the symbolic form as in:
LDA BETA PUT BETA VALUE IN ACCUMULATOR

In the example BETA references a byte in memory that is to be loaded into the
accumulator. BETA is an address at which the value is located. Similarly in
the instruction

LDA ALPHA+BETA
the address ALPHA+BETA is computed by the assembler and the value at the
computed address is loaded into the accumulator.

Memory associated with the MCS-650X processors is segmented into pages
of 256 bytes each. The f ir st page, page zero, is treated differently by the
assembler and by the processor for optimization of memory storage space. Many
of the instructions have alternate operation codes i f the operand address is in
page zero memory. In thosecases the address requires only one byte rather
than the normal two. For example i f BETA is located at byte 4B in page zero
memory then the code generated for

LDA BETA
is A5 4B. This is called page zero addressing. I f BETA is at 01 3C in memory
page one the code generated is AD 3C 10 This is an example of absolute
addressing. Thus, to optimize storage and execution time a programmer should
design with data areas in page zero memory whenever possible. Note that the
assembler makes decisions on which form to use based on operand address
computation.

7

Constants

Constant values in assembly language can take several forms as needed by
the programmer. I f a constant is other than decimal a prefix character is used
to specify type.

$ (Dollar sign) spec if ies hexadecimal
@ (Commercial at) spec if ies octal
% (Percent) spec if ies binary
' (Apostrophe) spec if ies an ASCII l itera l character

in immediate instructions

The absence o f a prefix symbol indicates decimal value. In the statement
LDA BETA+5

the decimal number 5 is added to BETA to compute the address. Similarly
LDA BETA+ $5F

denotes that the hexadecimal value 5F is to be added to BETA for the address
computation.

The immediate mode of addressing is s ign if ied by a # (Pounds sign) followed

by a constant. For example
LDA #2

spec if ie s that the decimal value 2 is to be put into the accumulator.
Similarly

LDA #'G
will load the ASCII character G into the accumulator.

Immediate mode addressing always generates two bytes of machine code, the

opcode and the value to be used as operand. Note that constant values can be
used in address expressions and as values in immediate mode addressing. They
can also be used to in i t ia l i z e locations as explained in a later section on
assembler directives.

8

Relative
There are 8 conditional branch instructions available to the user. An

example is
BEQ START IF EQUAL BRANCH TO START

which might typically follow a compare instruction. I f the values compared
are equal a transfer to the instruction labelled START is made. The branch
address is a one byte positive or negative offset which is added to the program
counter during execution. At the time the addition is made the program counter
is pointing to the next instruction beyond the branch instruction. Thus, a
branch address must be within 129 bytes forward or 125 bytes backward from the
conditional branch instruction. An errorw il l be flagged at assembly time i f
a branch target fa lls outside the bounds for relative addressing. Relative
addressing is not used for any other instructions.

Implied

Twenty-five instructions such as TAX (Transfer Accumulator to Index X)
require no operand and hence are single byte instructions. Thus, the operand
addresses are implied by the operation code.

Three instructions ASL, LSR, and ROL are special in that the accumulator,
A, can be usedas an operand. In this special case these three instructions
are treated as implied mode addressing and only an operation code is generated.

Indexed

Operands may be indexed with values in registers X and Y. Indexing is
indicated by a comma and appropriate le tter following the operand. For example

LDA BETA,Y
The value in register Y is added to BETA to form the address of the operand. Not
all instructions can be indexed and on some indexing may be permitted with one
register but not the other. Refer to Table 2 for allowable addressing modes.

9

Indexed indirect
In this mode the operand address is a location in page zero memory

which contains the address to be used as an operand. An example is:
LDA (BETA,X)

The parentheses around the operand indicate i t is indirect mode. In the
above example the value in index register X is added to BETA. That sum
must reference a location in page zero memory. During execution the high
order byte of the address is ignored thus forcing a page zero address.
The two bytes starting at that location in page zero memory are taken as
the address o f the operand. For purposes of illustration assume the
following: BETA is 12

X contains 4
Locations 0017 and 0016 are 01 and 25
Location 0125 contains 37

Then BETA + X is 16, the address at location 16 is 0125. The value at
0125 is 37 and hence the instruction LDA (BETA,X) loads the value
37 into the accumulator. This form of addressing is shown in the
illustration below.

LDA (operand,X)

10

Indirect indexed
Another mode of indirect addressing uses index register Y and is

illustrated by:
LDA (GAMMA),Y

In this case GAMMA references a page zero location at which an address
is to be found. The value in index Y is added to that address to compute
the actual address of the operand. Suppose for example that:

GAMMA is 38 (hexadecimal)
Y contains 7
Locations 0039 and 0038 are 00 and 54
Location 005B contains 126

Then the address at 38 is 0054 and 7 is added to this giving an effective
address 005B. The value at 005B is 126 which is loaded into the
accumulator.

In indexed indirect the index X is added to the operand prior to the
indirection. In indirect indexed the indirection is done and then the
index Y is added to compute the effective address. Indirect mode is
always indexed except for a JMP instruction which allows an absolute
indirect address as exemplified by JMP (DELTA) which causes a branch
to the address at location DELTA. The indexed indirect mode of addressing
is shown in the illustration below.

LDA (operand),Y

X

0)
4 J 2
(0 CD
^ N

<D
CT)
CO

n Q -

ACD X X
AND X X
ASL (1) X
BIT X
CMP X X
CPY X X
CPX (2) X X
DEC X
EOR X X
INC
JMP (3)
JSR

X

LDA X X
LDX (2) X X
LDY X X
LSR (1) X
ORA X X
ROL (1) X
SBC X X
STA X
STX X
STY X

X > ->>X) >) >5XJ XIXICD XI XIx CD CDCD X XTD CD CDe XI Xc c•c~ -r"
CD 2 CD CD+J CD +J +J3 N 3 3
o CD O OVI 05 V) mJ2 CO jQ XI< Q. < <

X X X X
X X X X
X X X
X
X X X X
X
X
X X X
X X X X
X X X
X
X
X X X X
X X X
X X X
X X X
X X X X
X X X
X X X X
X X X X
X X
X X

+Jo
2
T3cM

X
X

X

X

X

X

X

X
X

(1) Accumulator A can also be an operand
(2) Indexing with Y
(3) Indirect is absolute indirect and not indexed
The 8 conditional branches use relative addressing-.
The 25 other instructions not in this table use implied addressing.

Table 2. Instruction addressing modes.

12

III. ASSEMBLER DIRECTIVES

There are eight directives which are used to control the assembly process,
define values or in i t ia l iz e memory locations. Assembler directives always appear
in the opcode f ie ld o f an instruction and thus might be considered as assembly
time opcodes instead ofexecution time opcodes. The directives are: .BYTE, .WORD,
.DBYTE, .OPT, .PAGE, .SKIP, .END and equates which are denoted by the equals sign =.
All directives which are proceded by the period may be abbreviated to the period
and three characters i f desired (eg. .BYT).

.BYTE is used to reserve one byte of memory and load i t with a value. The

directive may contain multiple operands which will store values in consecutive
bytes. ASCII strings may also be generated by enclosing the string with quotes.

HERE .BYTE 2
THERE .BYTE l,$F,@3,%101,7
ASCII .BYTE 'ABCDEFH'

Note that numbers may be represented in the most convenient form. In general,
any valid MCS650X expression which can be resolved to eight bits may beused in

this directive. I f i t is desired to include a quote in an ASCII string, this may
be done by putting two quotes in the string;

.BYTE 'JIM"S CYCLE1
could be used to print:

JIM'S CYCLE
.WORD is used to reserve and load two bytes o f data at a time. Any valid

expression, except for ASCII strings, may be used in the operand field.

HERE .WORD 2
THERE .WORD 1, $FF03, @3
WHERE .WORD HERE, THERE

The most common use for .WORD is to generate addresses as shown in the above

example labelled "WHERE" which stores the 16 bit addresses o f "HERE" and "THERE".
Addresses in the MCS650X are fetched from memory in the order low byte, high byte,

13

and therefore .WORD generates the values in this order. The hexadecimal portion
of the second example above ($FF03) would be stored 03,FF. If th i s order i s not
desired, the following directive is used.

.DBYTE is exactly like .WORD except the bytes are stored in high byte, low
byte order.

.DBYTE $FF03
will generate FF,03. Thus, fields generated by .DBYTE may not be used as indirect
addresses.

= is the EQUATE directive and is used to reserve memory locations, reset
the program counter (*), or assign a val

HERE *=*+l
WHERE *=*+2
*=$200
NB=8
MB=NB+%101

The = directive is very powerful and can

ie to a symbol.
reserve one byte
reserve two bytes
set program counter
assign value
assign value

be used for a wide variety of purposes.

Expressions must not contain forward references or they will be
flagged as an error.

For example,
* = C + 0 - E * F

would be legal i f C, D, E and F are all defined but would be illegal i f any of
the variable^were a forward reference. Note also that expressions are evaluated
in s tr ic t le ft to right order.

.PAGE is used to cause an immediate jump to top of page and may also be
used to generate or reset the t i t l e printed at top of page.

.PAGE 1 THIS IS A TITLE'

.PAGE
,PAGE ‘NEW TITLE'

I f a t i t le is defined, i t will be printed at the top of each page until i t is

redefined or cleared. A t i t le may be cleared with: .PAGE ' '.
14

.SKIP is used to generate blank lines in a listing. The directive will not
appear but its position may be found in a lis t ing since it is treated as a valid
input "card" and the card number printed on the left side o f the listing will
jump by two when the next line is printed.

.SKIP 2 skip two blank lines

.SKIP 3*2-1 skip five lines

.SKIP ONELIN
.OPT is the most powerful directive and is used to control generation of

output fields>listings and expansion ofASCII strings in .BYTE directives
.OPT XREF, ERRORS, COUNT, LIST, MEMORY, GENERATE
.OPT NOXREF, N0ERR0RS, N0C0UNT, NOLIST, N0MEM0RY, NOGENERATE

The operand fields in this directive are only scanned for the f ir s t three
characters, thus all fields may be shortened to:

.OPT XRE,ERR,COU,LIS,MEM,GEN

.OPT N0X,N0E,N0C,N0L,N0M,N0G
Also valid is:

.OPT CNT
Default settings are:

. OPT NOCNT,XREF,MEM,LIST,ERR,NOGEN
The individual .OPT operands are:

(1) XREF [NOXREF] controls whether a full cross reference l isting will be
printed. A symbol table will always be printed (unless NOLIST is used,
see below).

(2) ERRORS [N0ERR0RS] is used to control creation of aseparate error file.
The error f i le contains the source line in error and the error message.
This facility is normally of greatest use to time-sharing users who
have limited print capacity. The error f i le may be turned on and
examined until all errors have been corrected. The list ing f i l e may
then be examined. Another possibility is to run with:

.OPT ERRORS, NOLISTING
15

until all errors have been corrected and then make one more run with
.OPT NOERRORS, LISTING

(3) COUNT [N0C0UNT] is used to generate a count o f times each instruction

has been used in a program and data on the number of symbols,
bytes of code generated, etc. which are mainly o f use to batch users
who might have to recompile the assembler i f they desire to assemble

very large programs. An instruction count can be very useful to

indicate i f certain instructions which might be useful are not being
used due to lack o f familiarity with the entire instruction set.

CNT may a ls ob e used for COUNT.
(4) LIST [NOLIST] is used to control the generation o f the l is t in g f i l e

which contains source input, errors andwarnings, code generated,

symbol table and instruction count i f enabled.
(5) MEMORY [N0MEM0RY] is used to control generation of the memory f i le

which is used as an interface between the assembler and the simulator
and various loader programs. The memory f i l e contains information
about symbols, line numbers and code generated and is described in

detail elsewhere in this document.
(6) GENERATE [NOGENERATE] is used to control printing of ASCII strings

in the .BYTE directive. The f ir s t two characters will always be
printed and further characters will be printed (normally two bytes

per line) i f GENERATE is used.
.END should be the last statement in a program and is used to signal the

physical end of the program. Its use is optional but highly recommended for

program documentation.

16

VI. Output f i le s
There are three output f i le s generated by the assembler. Each

f i l e is optional through use o f the .OPT assembler directive. The
l is t ing f i l e contains the program l i s t , symbol table and instruction
count. The error f i l e contains all error lines and errors. The
interface f i l e contains the interface to the simulator.

A. Listing f i l e
The l is t in g f i l e will be produced unless the NOLIST option

is used on the .OPT assembler directive. This f i l e is made up
of three sections: program, symbol table and instruction count.

1. Program
This l i s t in g will always be produced unless the NOLIST

option is selected. It conta1nsthe source statements o f
the program along with the assembled code. Errors and
warnings appear after erroneous statements. For an
explanation o f error codes see part B in this section.

At the end of the program is a count of the errors
and warnings found during the assembly. An example of
this section is shown below.

CARD # LOC CODE CARD

1 CR=15
2 LF=12
3 ; LOW CORE DATA AREAS
4 0000 E7 06 TEMTBL .WORD G3TEM, GlTEM
5 0002 E7 05
6 GR0UP=B10
7 0004 00 THI .BYTE 0
8 0005 00 TL0 .BYTE 0
9 0006 EA EA EA 3PER .WORD 0★ ★*★★ ERROR ** LABEL DOESN'T BEGIN WITH ALPHABETIC (

10 0009 B1 0E NEXT LDA (SAVIL)Y

269 07C9 C9 3B CMP #' ;
270 07CB F0 EA BEQ DONE★★★★* ERROR ★ ★UNDEFINED SYMBOL - NEAR COLUMN 18
280 . END

NEAR COLUMN 1

17

END OF MOS/TECHNOLOGY 650X ASSEMBLY VERSION 4
NUMBER OF ERRORS = 2, NUMBER OF WARNINGS = 0

2. Symbol table
The symbol table w il l always be produced unless the

NOLIST option i s u'sed. I t contains a l i s t o f all symbols
used in the program, th e ir value and the l in e they are
defined in. The cross-reference l i s t i n g i s part o f the
symbol table and is produced unless the NOXREF option is
used. It contains cross-references fo r each symbol.
Symbols that are undefined are flagged as such with
cross-references remaining in the l i s t in g . Part o f a
symbol table l i s t i n g with cross-references is shown below.

SYMBOL VALUE LINE DEFINED CROSS-REFERENCES

AGAIN 093C 369 374
BLANK 07F6 292 247 274 285
DONE *UNDEFINED* 0 270
EFLAG 001D 25

3. Instruction count
The instructi,on count table i s optional and w ill be

produced unless the N0C0UNT option is s e le c ted in the
.OPT d irect iv e. This table is a l i s t in g , in alphabetical
order, o f all the op codes with a usage count for each one.
At the end o f the table i s a count o f the number o f
symbols, bytes, l in es and cross-references generated along
with the assembler l im its fo r each o f these. An example of
the in struct ion count table is shown below.

ADC 2
AND 0
ASL 5
BCC 1
BCS 0

TXS * 5
TYA 3

SYMBOLS = 20(LIMIT=500) # BYTES = 243(LIMIT=1500)
LINES = 280(LIMIT=1000) # XREFS = 75(LIMIT=1500)

18

B. Error f i l e

Error messages are given in the program l is t in g accompanying the statement

in error as shown in previous examples. The same information may be produced

on a separate f i l e unless the N0ERR0RS option is specified. This f i l e can be

used conveniently i f the NOLIST option is taken. It would typically be used

with a timesharing system where a long program l is t in g during debugis time-

consuming and unnecessary. The following is a l i s t o f all error messages which

might be produced during assembly.

** A, X, Y, S, AND P ARE RESERVED NAMES

A label on a statement is one of the five reserved names (A, X, Y, S and

P). They have special meaning to the assembler and therefore cannot be

used as labels. Use o f one o f these names will cause the above error

message to be printed and no code to be generated for the statement. The

label does not get defined and will appear in the symbol table as an un

defined variable. Reference to such a label elsewhere in the program will

cause error messages to be printed as i f the label were never declared.

How to avoid: don't use A, X, Y, S or P as a label to a statement.

** ACCUMULATOR MODE NOT ALLOWED

Following a legal opcode and one or more spaces is the le tte r A followed

by 1 or more spaces. The assembler is trying to use the accumulator

(A means accumulator mode) as the operand. However, the opcode in the

statement is one which does not allow reference to the accumulator.

Check f o r a statement labelled A (an i l le ga l statement) to which this

statement is referencing. I fy ou were trying to reference the accumulator,
look up the valid operands for the opcode used.

19

** ADDRESS NOT VALID

* *

An address referred to in an instruction or in one of the

assembler directives (.BYTE and .WORD) is invalid. In the case

of an instruction, the operand that is generated by the assembler
must be greater than or equal to zero and less than or equal to

FFFF (2 bytes long). (This excludes relative branches which are

limited to 1 127 from the next instruction.) If the operand
generates more than 2 bytes of code or is less than zero, this

error message will be printed. For a .BYTE each operand is limited

to one byte and for a .WORD each operand is limited to two bytes.

All must be greater than or equal to zero.

This validity is checked after the operand is evaluated.

Check for values of symbols used in the operand field (see the

symbol table for this information).

FORWARD REFERENCE IN EQUATE OR ORG

The expression on the right side of an equals sign contains a

symbol that hasn't been defined previously. One of the operations
of the cross assembler is to evaluate expressions or labels and

assign addresses or values to them. The cross assembler processes

the input values sequentially which means that all of the symbolic

values that are encountered fall into two classes--already de

fined values and not previously encountered values. The cross

assembler assigns defined values and builds a table of undefined

values. When a previously used value is discovered, it is sub
stituted into the table and the cross assembler processes all of

the input statements a second time using currently defined values.

20

A label or expression which uses a yet undefined value is

considered to be referenced forward to the to-be-defined value.

To allow for conformity of evaluating expressions, this

cross assembler allows for one level of forward reference so

that the following code is allowed:

Card Sequence Label Opcode Operand

100 BNE New One

200 New One LDA #5

but the following is not allowed

Card Sequence Label Opcode Operand

100 BNE New One

200 New One Next + 5

300 Next LDA #5

This feature should not disturb the normal use of labels

as the cure for this error.

Card Sequence Label Opcode Operand

100 BNE New One

300 Next LDA #5

301 New One Next + 5

is very simple and always solves the problem.

This error may also mean that the value on the right

side of the = is not defined at all in the program in which case

the cure is the same as for undefined values.

Due to the sequential processing of the assembler and the

dependency on the value of the program counter on symbols,

:hroughout the rest of the program, the assembler cannot

21

* *

process a forward reference in this type of statement. All

expressions with symbols that appear on the right side of any

equals sign must refer only to previously defined symbols for

the equate to be processed.

ILLEGAL OPERAND TYPE FOR THIS INSTRUCTION

After finding an opcode that does not have an implied operand,

the assembler passes the operand field (the next non-blank

field following the opcode) and determines what type of

operand it is (indexed, absolute, etc.). If the type of

operand found is not valid for the opcode, this error message

will be printed.

Check to see what types of operands are allowed for the

opcode and make sure the form of the operand type is correct

(see the section on addressing modes). •

22

ILLEGAL OR MISSING OPCODE
The assembler searches a line until i t finds the f i r s t non-blank character
string. I f this string is not one of the 55 valid opcodes i t assumes i t is
a label and places i t in the symbol table. I t then continues parsing for
the next non-blank character string. I f none is found, the next line will
be read in and the assembly will continue. However, i f a 2nd f ie ld is
found i t is assumed to be an opcode (since one label is allowed per line) .
I f this character string is not a valid opcode, the error message is printed.

This error can occur i f opcodes are misspelled in which case the
assemblerwill interpret the opcode as a label (if no label appears on the
card). It will then try to assemble the next f ie ld as the opcode. If
there is another fie ld, this error will be printed.

Check for a misspelled opcode or for more than one label on a l in e .

INVALID EXPRESSION
In evaluating an expression, the assembler found a character i t couldn't
interpret as being part o f a valid expression. This can happen i f the
f ie ld following an opcode contains special characters not valid within
expressions (e.g. parentheses). Check the operand f ie ld and make sure
only valid special characters are within a f ie ld (between commas).

INVALID INDEX - MUST BE X OR Y
After finding a valid opcode, the assembler looks for the operand. In
this case, the f ir s t character in the operand f ie ld is a le f t paren. The
assembler interprets the next f ie ld as an indirect address which, with the

23

exception o f the jump statement, must be indexed by one o f the index

reg is te r s , X or Y. In the erroneous case, the character the assembler

was trying to interpret as an index r e g is t e r was not X or Y and the error

was printed.

Check for the operand f ie ld start ing with a l e f t paren. I f i t is

supposed to be an ind irect operand, recheck the correct format for the

two types available. I f the format was wrong (missing right paren or index

reg ister), this error w ill be printed. Also check for missing orwrong

index reg is te r s in an indexed operand (form: expression, index register)

** LABEL DOESN'T BEGIN WITH ALPHABETIC CHARACTER

The f i r s t non-blank f i e ld is not a valid opcode. Therefore, the assembler

tr ied to interpret i t as a label. However, the f i r s t character o f the

f i e ld does not begin with an alphabetic character and the error message

i s printed.

Check for an unlabelled statement with only an operand f i e ld that does

s ta rt with a specia l character. Also check for i l l e g a l label instruction.

** LABEL GREATER THAN SIX CHARACTERS

All symbols are lim ited to s ix characters in length. When parsing, the

assembler looks for one o f the separating characters to find the end o f a

label or str ing. I f other than one o f these separators is used, the error

message w ill be printed providing the i l l e g a l separator causes the symbol

to extend beyond s ix characters in length. Check for no spacing between

labels and opcodes. Also check for a comment card with a long f i r s t word

that doesn't begin with a semicolon. In th is case the assembler is trying

to interpret part o f the comment as a label.

24

** LABEL OR OPCODE CONTAINS NON-ALPHANUMERIC CHARACTER
Labels are made up of from one to six alphanumeric digits. The label
f ie ld must be separated from the opcode f ie ld by one or more blanks.
I f a special character or other separator is between the label and the
opcode, this error message might be printed.

The 55 valid opcodes are each three alphabetic characters. They
must be separated from the operand fie ld (if one is necessary) by one or
more blanks. I f the opcode ends with a special character (such as a
comma), this error message will be printed.

In the case o f a lone label or an opcode that needs no operand,
they can be followed directly by a semicolon to denote the rest o f the
card as a comment.

** LABEL PREVIOUSLY DEFINED
The f ir s t f ie ld on the card is not an opcode so i t is interpreted as a
label. I f the current line is the f ir s t line in which that symbol appears
as a label (or on the le ft side of an equals sign) i t is put in the symbol
table and tagged as defined in that line. However, i f the symbol has
appeared as a label, or on the le ft o f an equate, prior to the current
line, the assembler finds the label already in the symbol table. The
assembler does not allow redefinitions of symbols and w ill, in this case,
print the error message.

** OUT OF BOUNDS ON INDIRECT ADDRESSING
An indirect address is recognized by the assembler by the parentheses that

surround it. I f the f ie ld following an opcode has parens around it , the
assemblerwill try to assemble i t as an indirect address. Since indirects
work only in page zero memory, i f the address in the operand f ie ld extends
into absolute (is larger than 256 - one byte) this error message will be

25printed.

This error will only occur i f the operand f ie ld is in correct form
(i.e. an index register following the address), and the address f ie ld
is out o f page zero. To correct this, the address f ie ld must refer to page
zero memory.

** PROGRAM COUNTER NEGATIVE - RESET TO 0
An assembled program is loaded into core from position 0 to 64K (65536).

This is the extent o f the machine. Instructions can only refer to up to
2 bytes o f information. Because there is not such a thing as negative memory,
an attempt to reference a negative position will cause this error and the
program counter (or pointer to the current memory location) will be reset

to 0.
When this error occurs, the assembler continues assembling the code

with the new value of the program counter. This could cause multiple
bytes to be assembled into the same locations. Therefore, care should be
taken to keep the program counter within the proper limits.

** RAN OFF END OF CARD

This error message will occur i f the assembler is looking for a needed
f ie ld and runs o f f the end of the card (or line image) before the f ie ld
is found. The following should be checked for: a valid opcode f ie ld

without an operand f ie ld on the same card; an opcode that was thought
to take an implied operand, which in fact needed an operand; an ASCII
string that is missing the closing quote (make sure any embedded quotes
are doubled - to have a quote in the string at the end, there must be 3
quotes - 2 for the embedded quote and one to close o f f the string); a
comma at the end of the operand f ie ld indicates there are more operands
to come; i f there aren't other operands, the assembler will run o f f the

card looking for them. 26

** RELATIVE BRANCH OUT OF RANGE
All o f the branch instructions (excluding the two jumps) are assembled into
2 bytes of code. One byte is for the opcode and the other for the address
to branch to. To allow a forward or backward branch, this branch is taken
relative to the beginning o f the next instruction, according to the address

byte. I f the value of the byte is 0-127 the branch is forward; i f the
value is 128-255 the branch is backward. (A negative branch is in 21s
complement form). Therefore, a branch instruction can only branch forward
or backward 127 bytes relative to the beginning of the next instruction.
I f an attempt is made to branch further than these limits, the error message
will be printed.

** UNDEFINED ASSEMBLER DIRECTIVE

All assembler directives begin with a period. I f a period is the f ir s t
character in a non-blank f ie ld the assembler interprets the following
character string as a directive. I f the character string that follows
is not a valid assembler directive, this error message will be printed.

Check for a misspelled directive, or a period at the beginning of

a f ie ld that is not a directive.

** UNDEFINED SYMBOL

This error is generated by the 2nd pass. I f in the f ir s t pass the assembler
finds a symbol in the operand f ie ld (the f ie ld following the opcode or an

equals sign) that has not been defined yet, that symbol is flagged for
interpretation by pass 2. I f the symbol is defined (shows up on the le f t
o f an equate or as the f ir s t non-blank f ie ld in a statement) pass 1 will
define i t and enter i t in the symbol table. Then a symbol in an operand
f ie ld before the definition will be defined with a value when pass 2
assembles it. In this case the assembly process can be completed. However,

27

i f pass 1 doesn't find the symbol as a label or on the le f t o f an equate,
i t never enters i t in the symbol table as a defined symbol. When pass 2

tries to interpret the operand f ie ld this type of symbol is in, there is
no value for the symbol and the f ie ld cannot be interpreted. Therefore,
the error message is printed with no value for the operand.

This error will also occur i f a saved symbol (A, X, Y, S or P) is used

as a label and refered to elsewhere in the program. On the statement that

references the saved symbol, the assembler sees i t as a symbol that has not

been defined.
Check for use of saved symbols, misspelled labels or missing labels to

correct this error.

Along with the error messages l isted, there is one warning message that

might be printed. The difference between the errors and warnings is that unlike

errors, warnings generate the full code for the statement. Errors generate

partial code and leave NOPs where code cannot be generated. The following is
the warning that might be produced during assembly.

** FORWARD REFERENCE TO PAGE ZERO MEMORY

When the assembler finds an expression (whether i t is in an operand f ie ld
or on the right o f an equals sign) i t tr ies to evaluate the expression.

I f there is a symbol within the expression that hasn't been defined yet,

the assembler will flag i t as a forward reference and wait to evaluate

i t in the second pass. I f the expression is on the right side o f an equals
sign, the forward reference is a severe error and will be flagged as such.

However, i f the expression is in an operand f ie ld of a valid opcode, the
f ir s t pass will set aside 2 bytes for the value of the expression and flag
i t as a forward reference. When the 2nd pass f i l l s in the value of the
expression, this warning will be printed i f the expression is one byte long

28

(i.e. £ 256). The warning is printed because the forward reference to

page zero memory wastes one byte of memory - the extra one that was saved
because during the f ir s t pass the assembler didn't know how large the value

was so had to save for the largest value - 2 bytes.

C. Interface f i l e

The interface f i l e will be produced on a separate f i l e unless the N0MEM0RY

option is used in the .OPT directive. This f i l e is the output from the assembler
that is used as input to the simulator and other loader programs.

29

D. The following example l i s t s some of the characteristics and capabil ities

of the MCS650X cross-assembler.

(1) The t i t l e is generated with the following card:
.PAGE 'MULTIPLE BYTE DECIMAL ADD'

The page directive can be used for l i s t ing control and t i t l e
information. A directive with no t i t l e f ie ld will cause a skip

to top of next page. I f a t i t l e had previously been used, i t will

be printed again. To clear a t i t l e f ie ld, enter the following:

.PAGE ' '

(2) Comment - f i r s t non-blank is ';'.

(3) The program counter is set to zero. In this example, not really

necessary as the program counter is automatically started at zero.

(4) An equate. The variable NB is assigned the decimal value 8.

(5) These instructions provide the dual purpose of defining the start

o f data areas and reserving memory locations for the data. Ex

pressions which do not contain forward references are permitted.

(6) This shows an address calculated from the current value of the

program counter. The current PC (*) points to the beginning of

the instruction (24), hence *-l=23. Note also that addresses on

the MCS650X machines are stored low byte, high byte; thus the
operand f ie ld of the jump instruction is 23,00 and not 00,23. The

code printed on the assembly l i s t ing is exactly as i t is loaded
in memory and fetched by the processor during machine execution.

(7) Blank line generated by .SKIP 1. Note card was counted but not

printed.

(8) Program counter is set to decimal 100 (Hex 64).
(9) Immediate mode used to load Y with byte count.

30

(10) Expressions. Note that expressions are evaluated in s t r i c t le f t to
right orderwith no parenthetical nesting allowed. Thus the logical

evaluation of the expression is:
(3*NB)-1 = (3*8)-l = 24-1 = 23 = 17 (Hex)

(11) The .END directive signals end of assembly.
(12) Cross-reference l i s t ing requested by

.0PT XREF
Showing sorted symbol table (12A), value (12B), line defined (12C),
and line numberwhere symbol was referenced (12D). A symbol which
is referenced but never defined will be clearly marked with:

**UNDEFINED
in the value f ie ld and symbols defined but never referenced are marked

by

in the reference position. This is not an error but is included for
programmer reference as an unreferenced symbol may sometimes indicate

logical errors.
(13) Count of all instructions used requested by

.0PT COUNT
or .0PT CNT

(14) Error f i l e requested by:
.OPT ERRORS

Contains card where error occurs and error message. This is normally

of greatest use to time-sharing users who have limited access to high

speed printers. The error f i l e can be l i s ted f i r s t on the terminal

to see i f there were any assembly errors. I f there were, they can
be corrected in the source input without l i s t ing the entire printout
at the terminal.

(15) This is the interface f i l e which is created by the assembler as input
31

to the simulator and various loader programs. All interface f i l e records

begin with a semicolon and a number. Records then contain a four
character hexadecimalsequence number. The format after this point
depends on the record type.
(15A) Type 1 records are basically a dump of the symbol table giving

symbols and their value.
(15B) Type 2 records describe the value of the program counter at the

beginning of each card.
(15C) Type 3 records contain the code generated by the program and

are normally of greatest interest. Each record contains the
standard information, a hexadecimal byte count, starting program

counter value, 32 characters containing 16 bytes of hexadecimal
code and a four character checksum. On records which contain
fewer than 16 bytes of data, the unused byte positions are f i l l ed
with zeroes. In this example, the f i r s t type 3 record contains

14 (decimal) bytes of data, the second a full 16 and the last
contains 5 bytes.

(15D) Type 4 records are used to denote the end of the interface fi le.

32

FORM - i4i2FC

0
1_

__
__

__
_

__
__

__
_

2_
__

__
__

__
3

__
__

__
__

4
5

__
__

__
__

6
__

__
__

_
__

__
__

_
7

__
__

__
__

__
__

_
8

__
__

__
_

fc
1

2
3

4
5

6
7

8
9

0
I
7

3
4

5
6

7
8

9̂
0

1
2

3
4

5
6

7
8

9
0

1
2

3
4

5
6

7
8

9
0

1
2

3
4

5
6

7
8

9
0

1
2

3
4

5
6

7
8

9
0

1
2

3
4

5
6

7
8

9
0

1
2

3
4

S
6

7
8

9
0
]
7

3
4

3
6
7

8
9

t
IN

S
T

R
U

C
r

iC
N

C

C
U

N
r

K

I
A

D
C

1
a

-(

A
 N

*C
0

i
~4

A
S

L
0

|
s

B
C

C
c

I
B

C
S

0
I_

__
__

__
__

B
£

G
0_

__
__

__
__

__
__

__
_

__
__

__
__

__
__

__
__

_
|

j
B

 I
f

D
e

M
i

0
|

B
N

B
1

0
F

L
j

c
R

R
K

|
0

Ö
V

C
!

c
B

V
S

0
C

L
C

1
__

__
__

__
__

_
__

__
_

.i
C
L
C

i
1

C
 L

 I
0

C
L

 V
c

*

C
M

P
0

I
€
W
>

0
C

P
Y

0
1

o
e

 c
0

__
__

__
_

D
E

X
I

D
E

 V
I

E
O

P
0

*^
T0

>v
I

N
C

0
O

S
I

N
 X

c
V

L
y

I
N

Y
Ö

J
M

P
1

J
 S

R
1

L
 C

 £
1

U
5

T
3

L
D

Y
1

L
S

P
0

N
Ü

P
1

*
—

C
T

R
A

5
P

H
 A

0
P

H
P

-

0
L_

__
__

__
__

R
U
L

__
__

__
__

__
__

__
__

_
b

■
P

L
P

i
c

I
R

C
L

§
1

j
R

T
I

0
!

|
R

T
S

|
1

s
e

d
0

1
..

S
E

C
j

0
S

E
C

1
S

E
 l

!
f)

.
S

 T
 A

i
~~

1
S

T
 x

!
1

S
T

Y
0

T
A

X
\._

__

_
__

—_
_ _

0
i_

__
_

;__
__

__
__

__
__

_
T

A
V

B
u

7
S

X
0

tN
T

X
A

0
^

T
X

S
I

£
T

Y
A

•
0

Ck O u_
0

S

Y
M

B
C

L
S

=
8

<

L
I

N
IT

=

4

0
ü

)
*

e
Y

T
E

S

=

3
e

(
L

I
M

I
T

=

4
0

9
6

)
;»

L

IQ
E

S

=
4

3

<
L

IM
I

7
-=

21

 1
0

0
)

__
__

__
_
3*

X

P
E

F
 S

a

4

1

3
<

L
iM

a
r

-

__
_

9
0

 0
)

6

__
__

__
__

.̂..
...

...
.

7
 _

 _
 ^
_

__
__

_
8

_

_
J

!j

3
3

4
5

6
7

8
9

0
\

2
3

4
5

6
7

8
9’ 0

 1

2
3

4
5

6
7

8
9

0
1

2
3

4
5

6
7

8
9

0
1

2
3

4
5

6
7

8
9 f

0
1

2
3

4
5

6
7

8
9

0
1

2
3

4
5

6
7

8
9 |

0
1

2
3

4
5_

6
7

8
9 ,

0
1

2
3

4
5

6
7

8
9

Using the G.E. Timesharing Cross-assembler.

Before using the assembler, users should be fami l iar with the
BLIST, MEDIA and ed i t ing commands. The BLIST command is used
to l i s t the output reports returned by the assembler and the MEDIA
command is used to transfer them to foreground f i l e s .

Prior to running the assembler, a f i l e must be created containing
the source code to be assembled. This f i l e must not contain l ine
numbers (EDIT DESEQUENCE conmand) and all a lphabetic characters
must be in upper case.

Once the f i l e i s created and ready to be assembled, ca l l the
assembler by i s su ing the command:

RUN MOSASM

The assembler wi l l respond by typing a header and requesting the
input filename. Enter the filename containing the code to be
assembled and hit the carriage return. Failure to enter a saved
filename wi l l cause the error

INPUT FILE NOT SAVED - PROGRAM TERMINATED

to be printed, fol lowed by termination o f the program.

I f a saved filename is entered, the assembler wi l l then ask fo r the con
trol filename. This i s the f i l e that wi l l be created by the inter face
program and background to control the assembly process. I f the
filename entered i s an o ld f i l e , the o ld f i l e wi l l be overwritten;
i f i t i s a new f i l e , the f i l e wi l l be created and placed in the
user's area. I t i s up to the user to de lete this f i l e . I f blanks
or a carriage return are entered rather than a filename, the
question wi l l be repeated.

Once the control f i l e has been establ i shed, the assembler wi l l
ask for a pr io r i ty . Valid entr ies are O(overnight), N or carriage
return (normal), P (priori ty) and S (super). The program checks
the f i r s t character only and an inval id entry wi l l cause a repeat
o f the question. Refer to the GE manual 2000.01B fo r a des c r ip
tion o f the p r i o r i t i e s .

37

When the priority is properly entered the job will be transfered
to background for processing. The user's job ID will be printed
followed by a summary of the reports generated by the assembler.
Refer to the section on output f i l es for further explanations of
these reports. The reports can be l is ted using the BLIST command.
I f you wish to save the reports beyond 24 hours, use the MEDIA
command to transfer them to foreground f iles.

38

VI. PROCEDURE FOR USING THE MCS650X CROSS-ASSEMBLER ON THE NCSS SYSTEM

1. Dial the appropriate number for the terminal speed you are
using and sign on. A sample sign on for a 30 cps terminal
is shown below.

CSS ONLINE - STMI
>L HSYS MOSTECO 1
PASSWORD:
ĵ* ~Ry î i T|/ f j <far 19"̂k2F ffi R% ffi P$ ffi 87% W TO

A/C INFO:
>DB
HSYS READY AT 15.43.20 ON 02SEPT75
CSS.211 05/07/75

2. Using the editor build and save a file containing the desired
source code. In Example 1, the sample program was inputed,
saved, and then listed using the PRINTF command.

39

14.46.30 >EDIT DICKI DATA
NEW FILE.
INPUT:
> />; 650X CROSS ASSEMBLER SAMPLE PROGRAM.
> ;> * = $C000 DEFINE ORIGIN.
> LDX4V$FF SET UP STACK.
> TXS LOAD STACK POINTER.
> LDA ir$F0 LOAD A WITH HEX F0.
> STA ASAVE SAVE A IN ASAVE.
>;>; ALLOCAR7TE SAVE AREAE
>; ALLOCATE SAVE AREA.
> ;
> * = $0000
>ASAVE * = *
> . END
>
EDIT:
>FILE
14.52.22 >PRINTF DICKI DATA

; 650X CROSS ASSEMBLER SAMPLE PROGRAM.
* = $C000
LDX ir$FF
TXS
LDA ir$F0
STA ASAVE

DEFINE ORIGIN.
SET UP STACK.
LOAD STACK POINTER.
LOAD A WITH HEX F0.
SAVE A IN ASAVE.

; ALLOCATE SAVE AREA.
* = $0000

ASAVE * = *
. END

Example 1

40

3. Build a file containing the JCL required to run the job and

save this file. In Example 2, the JCL file is saved as

Sampl Exec.

File 1 is a scratch file which will contain the intermediate

object code between Pass 1 & Pass 2.

File 2 is a scratch file which will contain all the error

messages generated by the assembly just completed.

File 3 is a permanent file which will contain the symbol table,

the line number table, and the object code in loader

format.

File 5 is the source code as entered above.

File 6 is defined as the terminal and the assembly will be

listed as it runs. This could be defined as a disk

file and listed after the assembly is completed.

41

14.52.34 >EDIT SAMPl EXEC
NEW FILE.
INPUT:
>ATTACH TEMP5 AS 192
>FILEDEF 1 DSK SCRAT1 DATA T LRECL 120
>FILEDEF 2 DSK SCRAT2 DATA T LRECL 120
>FILEDEF 3 DSK FCCAI DATA
>FILEDEF 5 DSK DICKI DATA P
>FILEDEF 6 CONO
>RUN W 3 S
>
EDIT:
>FILE
15.15.04 >PRINTF SAMPl EXEC

ATTACH TEMP5 AS 192
FILEDEF 1 DSK SCRAT1 DATA T LRECL 120
FILEDEF 2 DSK SCRAT2 DATA T LRECL 120
FILEDEF 3 DSK FCCAI DATA
FILEDEF 5 DSK DICKI DATA P
FILEDEF 6 CONO
RUN W 3 S

Example 2

4. List the error file and the source code file as desired

using the PRINTF command. Examples 3 and 4 show the assembler

listing and the listing of Files 2 and 3.

42

15.18.31 >SAMP1
15.18.37 ATTACH TEMP5 AS 192
SCRATCH ATTACHED AS 192,(T)
15.18.38 FILEDEF 1 DSK SCRATl DATA T LRECL 120
15.18.38 FILEDEF 2 DSK SCRAT2 DATA T LRECL 120
15.18.38 FILEDEF 3 DSK FCCAI DATA
15.18.38 FILEDEF 5 DSK DICKI DATA P
15.18.38 FILEDEF 6 CONO
15.18.38 RUN VV3S
EXECUTION:

CARD #■ LOC CODE CARD PAGE :
X

2Q ; 650X CROSS ASSEMBLER SAMPLE PROGRAM
J
4 0000 * = $ c o o o DEFINE ORIGIN.
5 c o o o A2 FF LDX $FF SET UP STACK.
6 C002 9A TXS LOAD STACK POINTER.
7 C00 3 A9 F0 LDA $F0 LOAD A WITH HEX F0.
8 C0 05 8 D 00 00 STA ASAVE SAVE A IN ASAVE.* * -k ic * WARNING ** FORWARD REFERENCE TO DIRECT MEMORY -' NEAR
Q COLUMN 6
y

10 ; ALLOCATE SAVE AREA.
i i 7
12 C008 * = $0000
13 0000 ASAVE * = *
14 . END

END OF MOS/TECHNOLOGY 6501 ASSEMBLY VERSION 3
NUMBER OF ERRORS = 0, NUMBER OF WARNINGS = 1

SYMBOL TABLE

SYMBOL VALUE LINE DEFINED CROSS-REFERENCES

ASAVE 0000 13 8

Example 3

43

15.20.32 >PRINTF SCRAT2 DATA

ERROR FILE
CARD ^ CARD

8 STA ASAVE SAVE A IN ASAVE.
***** WARNING ** FORWARD REFERENCE TO DIRECT MEMORY - NEAR COLUMN 6

15.21.03 >PRINTF FCCAI DATA

12711 ASAVE 0000
24E21 1 0000
24E22 6 C002
24E23 11 C008

0000
2 0000
7 C00 3

12 C008

0000
3 0000
8 C005

13 0000

0000
4 0000
9 C008

14 0000
37531 08 C000 A2FF9AA9F08D00000000000000000000 0461

5 C000
10 C008
0 0000

15.21.40 >DETACH TEMP5
:jE(00002)!1

15.22.07 >DR
INVALID CSS COMMAND

15.22.14 >DETACH TEMP5 AS 192
DEV 192 DETACHED

15.22.26 >LOG
23.730 VPU'S, 1.01 CONNECT HRS, 988 I/O
LOGGED OFF AT 15.22.32 ON 02SEPT75
x^w (

Example 4

INSTRUCTION COUNT

ADC Ü DEC 0 ROL 0
AND 0 DEX 0 RTI 0
ASL 0 ■ DEY 0 RTS 0
BCC 0 EOR 0 SBC 0
BCS 0 INC 0 SEC 0
BED 0 INX 0 SED 0
BIT 0 INY 0 SEI 0
BMI 0 JMP 0 STA 1
BNE 0 JSR 0 STX 0
BPL 0 LDA 1 STY 0
BRK 0 LDX 1 TAX 0
BVC 0 LDY 0 TAY 0
BVS 0 LSR 0 TSX 0
CLC 0 NOP 0 TXA 0
CLD 0 ORA 0 TXS 0
CLI 0 PHA 0 TYA 0
CLV 0 PHP 0
CMP 0 PLA 0
CPX 0 PLP 0
CPY 0

44

HEADQUARTERS -
MOS TECHNOLOGY, INC. 950 Rittenhouse Road
Norristown, Pa. 19401, (215) 666-7950, TWX: 510/660/4033

EASTERN REGION -
Mr. William Whitehead
MOS TECHNOLOGY, INC., Suite 312,
410JerichoTurnpike,Jericho, N.Y. 11753
(516) 8224240

WESTERN REGION -
MOS TECHNOLOGY, INC. 2172 Dupont Drive,
Patio Bldg., Suite 221. Newport Beach, CA. 92660
(714) 833-1600

Mr. Petr Sehnal, Regional Applications Mgr.
MOS TECHNOLOGY, INC., 26921 Grasmere Place,
Hayward, CA. 94542
(415) 881-8080 MOSTECHNOLOGY IN C

