Strange SSE3 opcodes

Intel used some strange opcodes for the SSE3 instructions. All MMX/SSE opcodes use the 0x0f prefix (former “pop cs”). They soon noticed the the 0x0f area gets full, so they used the 0x66, 0xf2, 0xf3 prefix as modifiers. The basic rule is: read more

How to divide fast by immediates

In almost all assembly books you’ll find some nice tricks to do fast multiplications. E.g. instead of “imul eax, ebx, 3” you can do “lea eax, [ebx+ebx*2]” (ignoring flag effects). It’s pretty clear how this works. But how can we speed up, say, a division by 3? This is quite important since division is still a really slow operation. If you never thought or heart about this problem before, get pen and paper and try a little bit. It’s an interesting problem.

Shift oddities

Most of the x86 instructions will automatically alter the flags depending on the result. Sometimes this is rather frustrating because you actually what to preserve the flags as long as possible, and sometimes you miss a “mov eax, ecx” which alters the flags. But at least it’s guaranteed that an instruction either sets the flags or it doesn’t touch them, independent of the actual operation… Or is it? read more

Redundant SSE instructions

As we all know the x86-ISA has a lot of redundant instructions (ie. instructions with the same semantic but different opcodes). Sometimes this is unavoidable, sometimes it looks like bad design. But with SSE it gets really weird. Let’s say we want to perform xmm0 <- xmm0 & xmm1 (ie. bitwise and). Not an uncommon operation; but we have 3 different ways do archive this:

  • andps xmm0, xmm1 (0f 54 c1)
  • andpd xmm0, xmm1 (66 0f 54 c1)
  • pand xmm0, xmm1 (66 0f db c1)

(Note that andpd/pand are SSE2 instructions)
Regarding the result in xmm0 these are really the same instructions. Now, why did Intel do this? First we’re going to inspect andps/andpd. Looking at the optimization manuals we get a hint: The ps/pd mark the target register to contain singles or doubles, so they should match the actual data you are operating on. read more