Create your own Version of Microsoft BASIC for 6502

If you disassemble a single binary, you can never tell why something was done in a certain way. If you have eight different versions, you can tell a lot. This episode of “Computer Archeology” is about reverse engineering eight different versions of Microsoft BASIC 6502 (Commodore, AppleSoft etc.), reconstructing the family tree, and understanding when bugs were fixed and when new bugs, features and easter eggs were introduced.

This article also presents a set of assembly source files that can be made to compile into a byte exact copy of seven different versions of Microsoft BASIC, and lets you even create your own version.

Microsoft BASIC for MOS 6502

First written in 1976, Microsoft BASIC for the 8 bit MOS 6502 has been available for virtually every 6502-based computer including the Commodore series (PET, C64), the Apple II series, Atari 8 bit machines, and many more.

These are the first eight versions of Microsoft BASIC:

Name Release VER ROM FP ROR Buffer Extensions Version
Commodore BASIC 1 1977 Y 9 Y ZP CBM 1.0
OSI BASIC 1977 1.0rev3.2 Y 6 Y - 1.0a
AppleSoft I 1977 1.1 N 9 Y 0200 Apple 1.1
KIM BASIC 1977 1.1 N 9 N ZP - 1.1a
AppleSoft II 1978 Y 9 Y 0200 Apple 2
Commodore BASIC 2 1979 Y 9 Y 0200 CBM 2a
KBD BASIC 1982 Y 6 Y 0700 KBD 2b
MicroTAN 1980 Y 9 N ZP - 2c

Name: Name of the computer system or BASIC interpreter

Release: Release date of this version – not necessarily the date when the source code was forked from Microsoft’s

VER: Version string inside the interpreter itself

ROM: Whether the software shipped in ROM, or was a program supposed to be loaded into RAM

FP: Whether the 6 digit or 9 digit floating point library was included. 9 digit als means that long error messages were included instead of two character codes, and the GET statement was supported.

ROR: Whether the ROR assembly instruction was used or whether the code worked around it

Buffer: Location of the direct mode input buffer; either zero page or above

Extensions: What BASIC extensions were added by the OEM, of any.

Version: My private version number used in this article and in my combined source

The Microsoft BASIC 6502 Combined Source Code

Download the assembly source code here: msbasic.zip

In order to assemble if, you will need the CC65 compiler/assembler/linker package.

The source can be assembled into byte-exact versions of the following seven BASICs:

  • Commodore BASIC 1
  • OSI BASIC
  • AppleSoft I
  • KIM-1 BASIC
  • Commodore BASIC 2 (PET)
  • Intellivision Keyboard Component BASIC
  • MicroTAN BASIC

You can build the source by running the shell script make.sh. This will create the seven files cbmbasic1.bin, osi.bin, applesoft.bin, kb9.bin, cbmbasic2.bin, kbd.bin and microtan.bin in the “tmp” directory, which are identical to the original ROMs.

You are welcome to help clean up the source more, to make it more readable and to break features out into CONFIG_* defines, so that the source base can be made more customizable.

Make sure to read on to the end of the article, as it explains more about the source and what you can do with it.

Microsoft BASIC 1

Ric Weiland, Bill Gates and Monte Davidoff at Microsoft wrote MOS 6502 BASIC in the summer of 1976 by converting the Intel 8080 version. While the former could fit well into 8 KB, so that a computer manufacturer could add some machine-specific I/O code and ship a single 8 KB ROM, code density was less on the 6502, and they could not fit it significantly below 8 KB – it was around 7900 bytes – so that computers with BASIC in ROM would require more than a single 8 KB ROM chip.

Spilling over 8 KB anyway, they decided to also offer an improved version with extra features in a little under 9 KB: This version had a 40 bit floating point library (“9 digits”) instead of the 32 bit one (“6 digits”), and the two-character error codes were replaced with actual error messages:

6 digit BASIC 9 digit BASIC
?NF ERROR
OK
?NEXT WITHOUT FOR ERROR
OK

9 digit BASIC also added support for the GET statement to read single keystrokes from the keyboard.

On startup, Microsoft BASIC 6502 asks for the size of memory:

MEMORY SIZE?

If the user just presses return, BASIC detects the size of memory itself. If, on the other hand, the user enters “A”, it prints:

WRITTEN BY RICHARD W. WEILAND.

Versions since 1.1 print:

WRITTEN BY WEILAND & GATES

Then it asks:

TERMINAL WIDTH?

Microsoft’s codebase could also be assembled either for use in ROM or in RAM: The RAM version additionally asks:

WANT SIN-COS-TAN-ATN?

These four statements are located at the very end of the interpreter image (actually, the init code is at the very end, but that gets overwritten anyway), so that up to 250 more bytes are available for the BASIC program if the start of BASIC RAM was set to the beginning of the SIN/COS/TAN/ATN code (“N”), or to overwrite ATN only (“A”) – in this case, the user would gain about 100 bytes extra.

All these questions were very similar to the ones presented on an Intel 8080 BASIC system – after all, BASIC 6502 was a direct port.

The start message looks something like this:

MOS TECH 6502 BASIC V1.0
COPYRIGHT 1977 BY MICROSOFT CO.
n BYTES FREE
OK

Microsoft’s codebase was very generic and didn’t make any assumptions on the machine it was running on. A single binary image could run on any 6502 system, if the start of RAM was set correctly, the calls to “MONRDKEY”, “MONCOUT”, “LOAD” and “SAVE” were filled with pointers to the machine-specific I/O code, and the “ISCNTC” function was filled with code to test for Ctrl+C.

Microsoft maintained this source tree internally and, at different points in time, handed their current version of the source to OEMs, which adapted and/or extended it for their machines. While most OEM versions were heavily modified in its user interaction (startup screen, line editing…), most of the code was very similar; some functions were even never changed for any version of BASIC. No OEM ever came back to Microsoft for updates, except for Apple and Commodore, which both synced once each, up to the bugfixed version 2.

Commodore BASIC 1 (1.0)

The BASIC that shipped with the first Commodore PET in 1977 is the oldest known version of Microsoft BASIC for 6502. It does not say “Microsoft” anywhere, and memory size detection and screen width were hardcoded, so on startup, it just prints *** COMMODORE BASIC ***, followed by the number of bytes available for BASIC.

Commodore added the “OPEN”, “CLOSE”, “PRINT#”, “INPUT#” and “CMD” statements for file I/O and added VERIFY to compare a program in memory to a file on a storage device. They also added “SYS” to call into assembly code – Microsoft’s code had only provided the “USR” function with a similar purpose. It seems Commodore didn’t like the “OK” prompt, so they renamed it to “READY.”.

All machine-specifics were properly abstracted by calls into the KERNAL jump table, the upper 7 KB of the 16 KB ROM – except for one call out into the screen editor part of the PET ROM:

        iny
        lda     (INDEX),y
.ifdef CONFIG_CBM1_PATCHES
        jsr     LE7F3	; patch
.else
        ldy     #$00
        asl     a
        adc     #$05
.endif
        adc     INDEX
        sta     INDEX
        bcc     L33A7
        inc     INDEX+1

This code fixes the garbage collector by doing the missing ldy/asl/adc in the patch code.

Speaking of patches: Commodore BASIC 1 has been binary patched a lot: There are six patch functions appended to the very end of the interpreter image that work around miscellaneous fixes. This is what one of these calls into a patch function looks like:

  .ifdef CONFIG_CBM1_PATCHES
        jmp     PATCH1
  .else
        clc
        jmp     CONTROL_C_TYPED
  .endif

Here is the patch function – someone indeed forget to clear the carry flag:

PATCH1:
        clc
        jmp     CONTROL_C_TYPED

Some of these patches are in generic code, and some in Microsoft-specific code. Later fixes in generic code are not necessarily identical to these patches. So this indicates that Commodore wrote the fixes. But it is unknown why these additions were done in the binary as opposed to the source: Commodore had the source and made lots of additions to it. Maybe it was just more convenient to patch the binary for debugging at some point.

Ohio Scientific (1.0a)

Ohio Scientific sold a wide series of 6502-based machines for several years, but they all shipped with the same version of 6 digit BASIC bought from Microsoft in 1977.

6 digit vs. 9 digit was probably a compile time option, because the differences are pretty straightforward, as can be seen in this example:

; ----------------------------------------------------------------------------
; ADD MANTISSAS OF FAC AND ARG INTO FAC
; ----------------------------------------------------------------------------
FADD4:
        adc     ARGEXTENSION
        sta     FACEXTENSION
.ifndef CONFIG_SMALL
        lda     FAC+4
        adc     ARG+4
        sta     FAC+4
.endif
        lda     FAC+3
        adc     ARG+3
        sta     FAC+3
        lda     FAC+2
        adc     ARG+2
        sta     FAC+2
        lda     FAC+1
        adc     ARG+1
        sta     FAC+1
        jmp     NORMALIZE_FAC5

Ohio Scientific only made minimal adaptions for their computers, and added no extensions. It asks for memory size and terminal width, and then prints OSI 6502 BASIC VERSION 1.0 REV 3.2".

One quirk on the Ohio Scientific is the inclusion of the WANT SIN-COS-TAN-ATN string, although BASIC ran in ROM. The code to print this string and adjust memory layout accordingly is not included. OSI BASIC is 7906 bytes in size. Without the extra string, they could have saved 21 bytes.

The string Garbage Collector was horribly broken in OSI BASIC, effectively destroying all string data – in Commodore BASIC 1, it had been binary patched for fix the problem.

AppleSoft I (1.1)

Apple shipped the first Apple II systems with Integer BASIC in ROM, Microsoft BASIC was only available as an option loaded from disk or tape. AppleSoft BASIC, as it was named, had only minor adaptions and extensions. On startup, it printed:

APPLE BASIC V1.1
COPYRIGHT 1977 BY MICROSOFT CO.

In order to make AppleSoft feel more like Integer BASIC, it showed a ‘]’ character instead of “OK” and said “ERR” instead of ERROR.

The memory size easter egg was modified in this version, it printed COPYRIGHT 1977 BY MICROSOFT CO instead of Weiland’s and Gates’ names. Since the Apple II character output code ignored the uppermost bit, this text could be hidden in ROM by setting the MSBs of every character:

.;287F C3 CF D0 D9 D2 C9 C7 C8 "COPYRIGH"
.;2887 D4 A0 B1 B9 B7 B7 A0 C2 "T 1977 B"
.;288F D9 A0 CD C9 C3 D2 CF D3 "Y MICROS"
.;2897 CF C6 D4 A0 C3 CF 0D 00 "OFT CO."

This version introduced another easter egg present in all later versions: BASIC 1.1 was the first version to include the "MICROSOFT!" easter egg text, as described in a previous article. The encoded (XOR 0x87) text was hidden in some floating point constants and never addressed.

AppleSoft I is the oldest known BASIC 1.1. Compared to 1.0, version 1.1 included minor bugfixes in GET/INPUT/READ, TAB() and LIST, as well as the fix in the Garbage Collector present in the Ohio Scientific machines and binary patched in Commodore BASIC 1.

BASIC 1.0 also had a bug where lines in direct mode that started with a colon were ignored:

        jsr     CHRGET
.ifdef CONFIG_11
        tax
.endif
        beq     L2351

CHRGET is supposed to set the zero flag on the end of an instruction, which can be end of line (0 character) or a colon. The original code wanted to check for an empty line and got the first character, and went on reading another line of it was empty - but a colon as the first character had the same effect. 1.1 fixed this by setting the flags on the value again.

Version 1.1 also contained various tiny speed optimizations: BEQs and BNEs were changed so that a cycle could be saved on the more likely case.

Here is another optimization in LEFT$/RIGHT$/MID$:

.ifndef CONFIG_11
        sta     JMPADRS+1
        pla
        sta     JMPADRS+2
.else
        tay
        pla
        sta     Z52
.endif
[...]
.ifdef CONFIG_11
        lda     Z52
        pha
        tya
        pha
.endif
        ldy     #$00
        txa
.ifndef CONFIG_11
        inc     JMPADRS+1
        jmp     (JMPADRS+1)
.else
        rts
.endif

The original code isn't only suboptimal, it's even dangerous, because it only increments the low byte of the address it wants to jump to and assumes it doesn't roll over to $00.

For some reason, the random number seed was changed slightly:

    .ifdef CONFIG_11
        .byte   $80,$4F,$C7,$52,$58
    .else
        .byte   $80,$4F,$C7,$52,$59
    .endif

But this doesn't make a difference, due to a bug present in all 9 digit versions of BASIC: The value is copied into the zero page together with the CHRGET routine:

.ifdef CONFIG_SMALL
        ldx     #GENERIC_CHRGET_END-GENERIC_CHRGET
.else
        ldx     #GENERIC_CHRGET_END-GENERIC_CHRGET-1
.endif
L4098:
        lda     GENERIC_CHRGET-1,x
        sta     CHRGET-1,x
        dex
        bne     L4098

On 9 digit BASIC, one extra byte had to be copied, but the start index was not changed, so the last digit was omitted. This bug exists in every known version of Microsoft BASIC.

Another bug was introduced on the Apple II: All previous versions of BASIC had the input buffer for instructions in direct mode in the zero page. On the Apple II, it was at $0200 in RAM, which broke some code that made assumptions on the address:

NEWSTT:
        jsr     ISCNTC   ; check for Ctrl + C
        lda     TXTPTR
        ldy     TXTPTR+1 ; high-byte of instruction pointer
        beq     L2683    ; 0 -> direct mode
        sta     OLDTEXT
        sty     OLDTEXT+1

Subsequent versions of BASIC compared the high-address of the text pointer:

        cpy     #>INPUTBUFFER

KIM-1 (1.1a)

The KIM-1 is a computer kit based around the MOS 6502, which was sold by the makers of the 6502 to show off the capabilities of this CPU. A 6 digit and a 9 digit version of Microsoft BASIC was available on tape, but the 6 digit version seems to be very rare. BASIC for the KIM-1 is the most authentic version of Microsoft BASIC, because it has only been minimally modified, it contains all questions about memory size, screen width, and the trigonometric functions, as well as the memory width easter egg. The encoded "MICROSOFT!" string can be found at the same spot as on the Apple II.

Although this is based on BASIC 1.1, just like AppleSoft I, there are a few fixes in array handling and the PRINT statement.

But they also introduced another bug: In input handling, again concerning the location of the input buffer, there is the following code:

        ldx     #<(INPUTBUFFER-1)
        ldy     #>(INPUTBUFFER-1)
        bne     L2AF8	; always

This code has been in place since 1.0 and assumes that INPUTBUFFER is above $0100. On the CBM1, which had the input buffer in the zero page, this had been hotfixed by Commodore by swapping the ldx and the ldy. On the OSI, this code didn't exist, as it is only included in versions that have the GET statement, i.e. 9 digit versions. AppleSoft I was not affected either, because it had the input buffer at $0200. And versions after the KIM fixed this by replacing the BNE with a BEQ in case the input buffer is in the zero page. It is obviously hard to maintain a single codebase with many compile time options that still does optimizations like these.

Since the first KIM-1 systems shipped in late 1975, their CPUs had the 6502 ROR bug, so KIM-1 BASIC had to work around this: Every ROR instruction is replaced by a corresponding sequence using LSR instead.

AppleSoft II (2.0)

AppleSoft II is the oldest version of Microsoft BASIC 2. It was available on tape or disk, and also in ROM in later Apple II models. It is the first BASIC from an OEM that had extended BASIC which was re-sync'ed with Microsoft's codebase. In other words: Apple licensed an improved and bugfixed version of BASIC, and merged their old changes into it.

BASIC 2 contains mostly bugfixes (all input buffer location bugs have finally been eliminated), small optimizations (reuse two adjacent zeros inside the floating point constant of 1/2 as the 16 bit constant of zero instead of laying it down separately), better error handling for DEF FN, and support for "GO TO" with a space in between as a synonym for GOTO. Also, the memory test pattern has been changed from $92/$24 to the more standard $55/$AA.

In AppleSoft II, Apple also eliminated the "memory size" and "terminal width" questions.

Commodore BASIC 2 (2.0a)

Just like Apple, Commodore went back to Microsoft for an updated version of BASIC, and integrated its changes into the new version. The version they got was slightly newer than Apple's, but the major difference was that Microsoft added the "WAIT 6502" easter egg. For this, they changed the encoding of the string "MICROSOFT!" that was hidden in every BASIC since 1.1 from XORed ASCII into PETSCII with the upper two bits randomly set - this way, the text would be just as obfuscated, but it the decoder would be shorter on PET systems. So Commodore BASIC 2 is the only version of Microsoft BASIC that ever accesses this hidden text.

Every version since 2.0a had the PETSCII version of the "MICROSOFT!" text in it - and so did every version of BASIC for 6809.

Intellivision Keyboard Component BASIC (2.0b)

The Mattel Intellivision is a game console released in 1980 that contained a very nonstandard 16 bit "CP1610" CPU. After a series of delays, the "Keyboard Component", an extension with its own 6502 CPU and Microsoft BASIC, was released in 1982, but canceled very soon. They are very rare today.

The BASIC in the Keyboard Component is the most custom of all known versions. It is based on a 6 digit version of BASIC 2 and younger than Commodore BASIC 2: It contains two bugfixes: One piece of code that pulled its caller's address from the stack and normalized it by adding one, had forgotten to respect the carry, so this could fail if the caller sits just on a page boundary. The other fix changed the number of steps needed for normalizing a floating point number.

Intellivision BASIC replaced LOAD and SAVE by PLOD, PSAV, VLOD, VSAV and SLOD, PRT, GETC and VER were added, and PEEK, POKE and WAIT were removed. But the customizations were even more extensive: Instead of keeping the interface to library code, a lot of code was replaced inline, and the whole init code was rewritten. While most of the generic code, for example memory handling was unchanged across Commodore, Ohio, AppleSoft and KIM, making it easier to later integrate Microsoft's fixes, some of even this code was altered on the Keyboard Component.

What is interesting about the strings in Intellivision BASIC is that they use both upper- and lower case. The start message is this:

INTELLIVISION BASIC
Copyright Microsoft, Mattel  1980

But upper-/lowercase support doesn't stop here: The complete code has been extended to be case insensitive, but case preserving. The CHRGET code, a super-optimized function living in the zeropage has been patched with a call to this function:

LF430:
        cmp     #'a'
        bcc     LF43A
        cmp     #'z'+1
        bcs     LF43A
        sbc     #$1F
LF43A:
        rts

This very unoptimized piece of code adds at least 17 cycles to every CHRGET, and will slow down execution measurably.

Microtan BASIC (2.0c)

The version of BASIC that shipped on the Tangerine MICROTAN 65 is, like the Ohio and KIM versions, again a very authentic version with few changes. The updated BASIC 2 contained a single bug fix, which is the floating point constant of -32768 which hadn't been updated from 6 to 9 digits correctly and was missing a byte. The startup message looks like this:

MICROTAN BASIC
(C) 1980 MICROSOFT

Microtan BASIC contains the complete "memory size" and terminal width procedures and the "Weiland/Gates" easter egg.

Although the Microtan was introduced in 1980, its version of BASIC was, like the KIM version, assembled with code that worked around the ROR bug in 6502 chips until mid-1976. The I/O library on the other hand made use of ROR, suggesting that this compile time option was set in error.

Bugs never fixed

As you can see, the first versions had many bugs that were quickly fixed, but fixed became less and less - simply because there were only very few bugs left. But still there are some bugs that never got fixed. The short copy of the random number seed for example, exists on all versions.

Similarly, the two extra constants used for generating random numbers (CONRND1, CONRND2) are 4 bytes in all versions, which is one byte short for 9 digit BASIC. But this is another bug that doesn't really matter, since the numbers will still be random enough.

The buggy check on large line numbers has also never been fixed. Typing 35072121 into any version of Microsoft BASIC will have the interpreter jump to a pseudo random memory address. The buggy code resides in "LINGET".

Something similar happens in the case of PRINT 5+"A"+-5: The interpreter will build up the formula on the CPU stack, but miss the string/float type mismatch because of the "+-", and messes up its stack when removing items. This bug is in "FRMEVL".

But the fact that Microsoft never fixed these bugs in their codebase doesn't mean none of the OEMs fixed them. While the LINGET and FRMEVL seem to have been unnoticed everywhere, at least the CONRND1/CONRND2 bug has been fixed by Commodore, at least as early as for the VIC-20 in 1980.

How to build your own BASIC

Now that you have the source that can build seven different OEM versions of Microsoft BASIC, and that you know about the differences between those, you might be interested in building your own version of BASIC 6502 for some 6502-based machine or customizing BASIC to build a bugfixed or extended version for some platform.

First duplicate one of the cfg files, and add it to make.sh. cbmbasic2 is a good start, as you can quite easily test the resulting images in the VICE emulator - CC65 can even provide symbol information for the VICE debugger. Add a case in defines.s to define one of CBM1, CBM2, APPLE etc., because you need one flavour of platform specific code, and include your own defines_*.s. For Commodore BASIC, you also need to define CONFIG_CBM_ALL.

If you are targeting a new type of computer, make sure to adjust the zero page locations in your defines_*.s file (ZP_STARTn) so that they don't clash with your I/O library. Also make sure that, in case you are compiling for RAM, the init code does not try to detect the memory size and overwrite itself.

The CONFIG_n defines specify what Microsoft-version the OEM version is based on. If CONFIG_2B is defined, for example, CONFIG_2A, CONFIG_2, CONFIG_11A, CONFIG_11 and CONFIG_10A will be defined as well, and all bugfixes up to version 2B will be enabled. The following symbols can be defined in addition:

CONFIG_CBM1_PATCHES

jump out into CBM1's binary patches instead of doing the right thing inline
CONFIG_CBM_ALL

add all Commodore-specific additions except file I/O
CONFIG_DATAFLG

?
CONFIG_EASTER_EGG

include the CBM2 "WAIT 6502" easter egg
CONFIG_FILE

support Commodore PRINT#, INPUT#, GET#, CMD
CONFIG_IO_MSB

all I/O has bit #7 set
CONFIG_MONCOUT_DESTROYS_Y

Y needs to be preserved when calling MONCOUT
CONFIG_NO_CR

terminal doesn't need explicit CRs on line ends
CONFIG_NO_LINE_EDITING

disable support for Microsoft-style "@", "_", BEL etc.
CONFIG_NO_POKE

don't support PEEK, POKE and WAIT
CONFIG_NO_READ_Y_IS_ZERO_HACK

don't do a very volatile trick that saves one byte
CONFIG_NULL

support for the NULL statement (send sync 0s for serial terminals)
CONFIG_PEEK_SAVE_LINNUM

preserve LINNUM on a PEEK
CONFIG_PRINTNULLS

whether PRINTNULLS does anything
CONFIG_PRINT_CR

print CR when line end reached
CONFIG_RAM

optimizations for RAM version of BASIC, only use on 1.x
CONFIG_ROR_WORKAROUND

use workaround for buggy 6502s from 1975/1976; not safe for CONFIG_SMALL!
CONFIG_SAFE_NAMENOTFOUND

check both bytes of the caller's address in NAMENOTFOUND
CONFIG_SCRTCH_ORDER

where in the init code to call SCRTCH
CONFIG_SMALL

use 6 digit FP instead of 9 digit, use 2 character error messages, don't have GET

Changing symbol definitions can alter an existing base configuration, but it is not guaranteed to assemble or work correctly.

I am very interested in your creations. Please add a comment to this article if you have made something new out of this source base!

Using the Floating Point Library Standalone

The complete project has been split into many components, each in their own assembly source file. The core floating point library is in float.s, extra trigonometric functions are in trig.s. It should not be too hard to use this broken-out part (in a 6 digit or 9 digit version) standalone in your own creations. The 9 digit version is a little over 2 KB in size, the 6 digit version is a little smaller.

Adding More Versions

If you want to add another version of BASIC into the source base, you can do it like this: Use "da65" from the CC65 package to dissemble your version of BASIC and all existing .bin files (with the correct base addresses), and run a "diff" command on the new disassembly and each of the disassemblies of the existing versions. The diff that contained the fewest changes (just look at the file size) is probably a good candidate to base your new version on. Or look at the release date or the family tree to find a version which is similar.

Now create a new version in the source base, as described earlier. Make sure the new version assembles; then compare the disassembly of your version with the disassembly of the original binary in a diff program, like the excellent Mac OS X FileMerge, to find the differences. In most cases, you will only have to adjust a few defines (CONFIG_* and zero page locations) in your defines_*.s file to get matching output. Otherwise, add ifdefs to the respective source files. Run regress.sh to verify that you didn't break the other versions.

Repeat the last step until the assembly process outputs the same file. Send your changes to me. :-)

Note that the idea of all versions of BASIC in the current source code is that they are all direct forks from Microsoft's codebase. I chose not to include versions like Commodore BASIC 4, Commodore BASIC 2 for the VIC-20/C64 etc., and I wouldn't add very late AppleSoft versions, because these are only extended versions of earlier forks and contain no extra code from the original Microsoft source base. Versions that would be very interesting to integrate would be AppleSoft II and Atari Microsoft BASIC, preferably the very first revisions of these.

Credits

  • Function names and all uppercase comments taken from Bob Sander-Cederlof's excellent AppleSoft II disassembly
  • AppleSoft lite by Tom Greene helped a lot, too.
  • Thanks to Joe Zbicak for his help with Intellivision Keyboard BASIC
  • This work is dedicated to the memory of my dear hacking pal Michael "acidity" Kollmann.
pixelstats trackingpixel

76 Responses to “Create your own Version of Microsoft BASIC for 6502”

  1. Excellent blog here! Also your site loads up very fast!
    What web host are you using? Can I get your affiliate
    link to your host? I wish my website loaded up as quickly
    as yours lol

  2. You’re so interesting! I do not believe I have read a single thing like this before.
    So good to find another person with unique thoughts on this issue.

    Seriously.. thanks for starting this up. This web site is
    something that’s needed on the web, someone with some originality!

  3. hi!,I love your writing very a lot! proportion we keep in touch more approximately your
    post on AOL? I need an expert on this area to resolve my
    problem. Maybe that is you! Looking forward to peer you.

    Stop by my web site … Microsoft points

  4. ???????? says:

    What’s up, yup this paragraph is really nice and I
    have learned lot of things from it concerning blogging.

    thanks.

  5. Hi to every body, it’s my first pay a quick visit of this blog; this webpage includes awesome and actually
    excellent information for readers.|

    Stop by my web site: program pit 2013 (http://nowyprogrampity.pl)

  6. North Face Bordeaux A team of a?ound 20 art?choopl graduates uses flexibe paeing knives to skin off
    a sk?nny layer of rind, making carvings which
    have been extraordinarily fine and detailed.For tablets, by contrast, he admits that
    some hot deals p?eviously p??sed by. http://www.taxico.fr/northface/?key=North+Face+Greenland

  7. Appreciate this post. Let me try it out.
    Simply just stumbled on your blog site in this article. Wide range
    of good facts We ended up being considering.
    Many thanks for taking a few minutes to talk about.

    Excellent weblog you’ve going on here. Numerous information getting shared.
    Much valued.
    There is a great weblog. Sustain the great work. Adore your current writing.

    Really great info you have below. Keep writing
    This really is a few quite amazing stuff you’re publishing.
    Who does have got idea.
    Incredibly intriguing data below. You have a lot of understanding for this theme definitely.

    This can be several really cool goods here. Amazing facts.
    Keep it up.

  8. It is appropriate time to make some plans for the future and it
    is time to be happy. I have read this post and if I could I desire to
    suggest you some interesting things or tips. Perhaps you
    could write next articles referring to this article.
    I desire to read more things about it!

  9. ?????? says:

    Its like you read my mind! You appear to know
    so much about this, like you wrote the book in it or something.
    I think that you could do with some pics to drive the message home a little bit, but other than that, this is
    excellent blog. An excellent read. I’ll certainly be
    back.

  10. Howdy! I simply wish to offer you a big thumbs up forr your excelent info you have
    here onn this post. I’ll be returning to your blog forr more soon.

  11. youtube.com says:

    youtube.com…

    Create your own Version of Microsoft BASIC for 6502 ? pagetable.com…

  12. ergo baby says:

    I just could not leave your site before suggesting that
    I really enjoyed the usual info an individual provide in your
    visitors? Is gonna be again continuously to check up on new posts

    Stop by my web page: ergo baby

  13. Hi there! This article couldn’t be written any better!
    Looking at this post reminds me of my previous roommate!
    He always kept talking about this. I am going to send this article to him.

    Pretty sure he’ll have a good read. Thanks for sharing!

    my web site :: louis vuitton pl?nbok

  14. games says:

    I was recommended this web site through my cousin. I’m not positive whether or not this submit is written by means
    of him as nobody else know such distinctive approximately my problem.
    You are wonderful! Thanks!

  15. view wonga voucher code…

    Create your own Version of Microsoft BASIC for 6502 ? pagetable.com…

  16. liquid hcg says:

    What’s even better, these can be substituted for your meals.
    The claim that green tea can cause weight loss is no exception to it.
    Furthermore, there are diuretics available in the market that you can buy.

    Stop by my blog liquid hcg

  17. prepurpose says:

    Hi there everyone, it’s my first pay a quick visit at this web page, and piece of writing is actually fruitful for me, keep up posting such content.

  18. do not hesitate to call us. Always rely on our willingness to always respond to your calls by letting locksmiths come to your location and fix any
    troubles. No more time constraints

  19. In a few cases, the worms can literally eat the food that you’re consuming, stripping your body of the nutrients it needs.
    Watching the scales fluctuate every day only serves to drive me
    bonkers. When choosing a good diet program for you, consider
    your height, weight, lifestyle and how much exercise you can do.

    My blog post … Hcg diet Meal plan

  20. Est-il possible de copier deux-trois lignes sur mon site personnel ?

  21. Douglas Sasse says:

    looking to get fpga 6502 apple clone with software (i’m only a hardware person) do you sell the board? thanks for the data.

    douglas sasse
    p.o.box 1064
    Mankato, Minnesota, us of a
    56002-1064

  22. porno garce says:

    Ce poste est vraiment rempli de bons conseils

  23. 8 says:

    Hi there i am kavin, its my first occasion to commenting anyplace,
    when i read this article i thought i could also create comment due to this brilliant post.

  24. Good way of telling, and good post to obtain facts regarding my presentation subject matter, which i am going to present in university.

    Feel free to surf to my web page: blue ruin télécharger

  25. Hi it’s me, I amm aalso visiting thjs web pagge
    daily, this web site is actually pleasant and the users are truly
    sharing good thoughts.

    my site; Xovilichter Weltmeisterlich

  26. Good day! This is kind of off topic but I need some help from an founded blog.
    Is it very hard to set up your own blog? I’m not very complicated but
    I can figure things out pretty quick. I’m thinking about creating my own but I’m not sure where to begin. Do you have any tips
    or suggestions? Thank you

Leave a Reply

*
To prove you're a person (not a spam script), type the security word shown in the picture. Click on the picture to hear an audio file of the word.
Click to hear an audio file of the anti-spam word